Quantile Filtering of Colour Images via Symmetric Matrices

Abstract

Quantile filters, or rank-order filters, are local image filters which assign quantiles of intensities of the input image within neighbourhoods as output image values. Combining a multivariate quantile definition developed in matrix-valued morphology with a recently introduced mapping between the RGB colour space and the space of symmetric 2 × 2 matrices, we state a class of colour image quantile filters, along with a class of morphological gradient filters derived from these.We consider variants of these filters based on three matrix norms – the nuclear, Frobenius, and spectral norm – and study their differences. We investigate the properties of the quantile and gradient filters and their links to dilation and erosion operators. Using amoeba structuring elements,we devise image-adaptive versions of our quantile and gradient filters. Experiments are presented to demonstrate the favourable properties of the filters, and compare them to existing approaches in colour morphology.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Agoston M.K., Computer Graphics and Geometric Modeling: Implementation and Algorithms. Springer, London, 2005

  • [2] Borgefors G., Distance transformations in digital images, Computer Vision, Graphics and Image Processing, 1986, 34, 344– 371

  • [3] Boroujerdi A., Breuß M., Burgeth B., Kleefeld A., PDE-based color morphology using matrix fields. In Aujol J.-F., Nikolova M., Papadakis N., eds., Scale Space and Variational Methods in Computer Vision, vol. 9087 of Lecture Notes in Computer Science, Springer, Cham, 2015, 461–473

  • [4] Burgeth B., Kleefeld A., Morphology for color images via Loewner order for matrix fields. In Luengo Hendriks C.L., Borgefors G., Strand R., eds., Mathematical Morphology and Its Applications to Signal and Image Processing, vol. 7883 of Lecture Notes in Computer Science, Springer, Berlin, 2013, 243–254

  • [5] Burgeth B., Kleefeld A., An approach to color-morphology based on Einstein addition and Loewner order, Pattern Recognition Letters, 2014, 47, 29–39

  • [6] Burgeth B., Kleefeld A., Order based morphology for color images via matrix fields. In Westin C.-F., Vilanova A., Burgeth B., eds., Visualization and Processing of Tensor Fields and Higher Order Descriptors for Multi-Valued Data, Springer, Berlin, 2014, 75–95

  • [7] Burgeth B., Welk M., Feddern C., Weickert J., Mathematical morphology on tensor data using the Loewner ordering. In Weickert J., Hagen H., eds., Visualization and Processing of Tensor Fields, Springer, Berlin, 2006, 357–368

  • [8] Chaudhuri P., On a geometric notion of quantiles for multivariate data, J. Amer. Statist. Assoc., 1996, 91, 862–872

  • [9] Dijkstra E., A note on two problems in connexion with graphs, Numer. Math., 1959, 1, 269–271

  • [10] Fabbri R., Da F. Costa L., Torelli J.-C., Bruno O.M., 2D Euclidean distance transform algorithms: A comparative survey, ACM Computing Surveys, 2008, 40(1), art. 2

  • [11] Guichard F., Morel J.-M., Partial differential equations and image iterative filtering. In Duff I.S., Watson G.A., eds., The State of the Art in Numerical Analysis, no. 63 in IMA Conference Series (New Series), Clarendon Press, Oxford, 1997, 525–562

  • [12] Hayford J.F., What is the center of an area, or the center of a population? J. Amer. Statist. Assoc., 1902, 8, 47–58

  • [13] Ikonen L., Toivanen P., Shortest routes on varying height surfaces using gray-level distance transforms, Image and Vision Computing, 2005, 23, 133–141

  • [14] Kleefeld A., Breuß M., Welk M., Burgeth B., Adaptive filters for color images: median filtering and its extensions. In Trémeau A., Schettini R., Tominaga S., eds., Computational Color Imaging, vol. 9016 of Lecture Notes in Computer Science, Springer, Berlin, 2015, 149–158

  • [15] Lerallut R., Decencière É., Meyer F., Image processing using morphological amoebas. In Ronse C., Najman L., Decencière E., eds., Mathematical Morphology: 40 Years On, vol. 30 of Computational Imaging and Vision, Springer, Dordrecht, 2005, 13–22

  • [16] Lerallut R., Decencière É., Meyer F., Image filtering using morphological amoebas, Image and Vision Computing, 2007, 25, 395–404

  • [17] Löwner K., Über monotone Matrixfunktionen, Math. Z., 1934, 38, 177–216

  • [18] Meyer F., Maragos P., Nonlinear scale-space representation with morphological levelings, Journal of Visual Communication and Image Representation, 2000, 11, 245–265

  • [19] Oja H., Descriptive statistics for multivariate distributions, Statist. Probab. Lett., 1983, 1, 327–332

  • [20] Rivest J.-F., Soille P., Beucher S., Morphological gradients, Journal of Electronic Imaging, 1993, 2, 326–336

  • [21] Sapiro G., Vector (self) snakes: a geometric framework for color, texture and multiscale image segmentation. In Proc. 1996 IEEE International Conference on Image Processing, vol. 1, Lausanne, Switzerland, Sept. 1996, 817–820

  • [22] Schatten R., von Neumann J., The cross-space of linear transformations. II., Ann. of Math. (2), 1946, 47, 608–630

  • [23] Sexl R.U., Urbantke H.K., Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics, Springer, Wien, 2001

  • [24] Spence C., Fancourt C., An iterative method for vector median filtering. In Proc. 2007 IEEE International Conference on Image Processing, vol. 5, 2007, 265–268

  • [25] Tukey J.W., Exploratory Data Analysis, Addison–Wesley, Menlo Park, 1971

  • [26] Ungar A.A., Einstein’s special relativity: The hyperbolic geometric viewpoint. In Conference on Mathematics, Physics and Philosophy on the Interpretations of Relativity, II, Budapest, 2009

  • [27] van de Gronde J.J., Roerdink J.B.T.M., Group-invariant frames for colour morphology. In Luengo Hendriks C.L., Borgefors G., Strand R., eds., Mathematical Morphology and Its Applications to Signal and Image Processing, vol. 7883 of Lecture Notes in Computer Science, Springer, Berlin, 2013, 267–278

  • [28] van de Gronde J.J., Roerdink J.B.T.M., Group-invariant colour morphology based on frames, IEEE Transactions on Image Processing, 2014, 23, 1276–1288

  • [29] Vardi Y., Zhang C.-H., A modified Weiszfeld algorithm for the Fermat-Weber location problem, Math. Program., 2001, 90, 559–566

  • [30] Weber A., Über den Standort der Industrien, Mohr, Tübingen, 1909

  • [31] Weiszfeld E., Sur le point pour lequel lasommedes distances de n points donnés est minimum, TôhokuMathematics Journal, 1937, 43, 355–386

  • [32] Welk M., Dynamic and Geometric Contributions to Digital Image Processing, Habilitation Thesis, Saarland University, Saarbrücken, Germany, 2007

  • [33] Welk M., Amoeba techniques for shape and texture analysis, Technical Report cs:1411.3285, arXiv.org, 2014

  • [34] Welk M., Partial differential equations for bivariate median filters. In Aujol J.-F., Nikolova M., Papadakis N., eds., Scale Space and Variational Methods in Computer Vision, vol. 9087 of Lecture Notes in Computer Science, Springer, Cham, 2015, 53–65

  • [35] Welk M., Becker F., Schnörr C., Weickert J., Matrix-valued filters as convex programs. In Kimmel R., Sochen N., Weickert J., eds., Scale Space and PDE Methods in Computer Vision, vol. 3459 of Lecture Notes in Computer Science, Springer, Berlin, 2005, 204–216

  • [36] Welk M., Breuß M., Morphological amoebas and partial differential equations. In Hawkes P.W., ed., Advances in Imaging and Electron Physics, vol. 185, Elsevier Academic Press, 2014, 139–212

  • [37] Welk M., Breuß M., Vogel O., Morphological amoebas are self-snakes, J. Math. Imaging Vision, 2011, 39, 87–99

  • [38] Welk M., Feddern C., Burgeth B., Weickert J., Median filtering of tensor-valued images. In Michaelis B., Krell G., eds., Pattern Recognition, vol. 2781 of Lecture Notes in Computer Science, Springer, Berlin, 2003, 17–24

  • [39] Welk M., Kleefeld A., Breuß M., Non-adaptive and amoeba quantile filters for colour images. In Benediktsson J.A., Chanussot J., Najman L., Talbot H., eds., Mathematical Morphology and its Applications to Signal and Image Processing, vol. 9082 of Lecture Notes in Computer Science, Springer, Cham, 2015, 398–409

  • [40] Welk M., Weickert J., Becker F., Schnörr C., Feddern C., Burgeth B., Median and related local filters for tensor-valued images, Signal Processing, 2007, 87, 291–308

  • [41] World Wide Web Consortium (W3C), HTML 4.01 specification, 1999, Online ressource, http://www.w3.org/TR/html401/

OPEN ACCESS

Journal + Issues

Mathematical Morphology – Theory and Applications (MMTA) is an open access, peer-reviewed, electronic journal publishing either purely theoretical advances, or new ways of applying mathematical morphology to real-world problems. MMTA serves also as a forum open to other related mathematical image processing approaches as discrete geometry, topological imaging and scale-space models.

Search