Solution of the Space-dependent Wigner Equation Using a Particle Model

H. Kosina 1 , M. Nedjalkov 2  and S. Selberherr 1
  • 1 Institute for Microelectronics, TU-Vienna, Austria
  • 2 CLPP, Bulgarian Academy of Sciences, Sofia, Bulgaria

The Wigner equation is well suited for numerical modeling of quantum electronic devices. In this work, the stationary, position-dependent Wigner equation is considered. Carrier scattering is described semi-classically by the Boltzmann collision operator. The development of Monte Carlo algorithms is complicated by the fact that, as opposed to the semiclassical case, the integral kernel is no longer positive semi-definite. Particle models are presented which interpret the potential operator as a generation term of numerical particles of positive and negative statistical weight. The problem arising from the avalanche of numerical particles is thereby solved for the steady state. When constructing the algorithms particular emphasis has been put on the conservation laws implied by the Wigner equation. If particles of opposite sign are generated pairwise, charge is conserved exactly. If the free-flight time is reduced such that only one particle is generated each time, then the sign of the particle weight is selected randomly, and charge is conserved only on average.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

This quarterly published journal presents original articles on the theory and applications of Monte Carlo and Quasi-Monte Carlo methods. Launched in 1995 the journal covers all stochastic numerics topics with emphasis on the theory of Monte Carlo methods and new applications in all branches of science and technology.

Search