Special quasirandom structures: A selection approach for stochastic homogenization

Claude Le Bris 1 , Frédéric Legoll 2 , and William Minvielle 2
  • 1 École des Ponts and INRIA, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France
  • 2 École des Ponts and INRIA, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France


We adapt and study a variance reduction approach for the homogenization of elliptic equations in divergence form. The approach, borrowed from atomistic simulations and solid-state science , , , consists in selecting random realizations that best satisfy some statistical properties (such as the volume fraction of each phase in a composite material) usually only obtained asymptotically. We study the approach theoretically in some simplified settings (one-dimensional setting, perturbative setting in higher dimensions), and numerically demonstrate its efficiency in more general cases.

  • 1

    A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: Some recent developments, Multiscale Modeling and Analysis for Materials Simulation, Lect. Notes Series 22, World Scientific, Hackensack (2011), 197–272.

  • 2

    A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Methods in Periodic Structures, Stud. Math. Appl. 5, North-Holland, Amsterdam, 1978.

  • 3

    C. Bernardin and S. Olla, Thermodynamics and non-equilibrium macroscopic dynamics of chains of anharmonic oscillators, preprint 2014, https://www.ceremade.dauphine.fr/~olla.

  • 4

    X. Blanc, R. Costaouec, C. Le Bris and F. Legoll, Variance reduction in stochastic homogenization: The technique of antithetic variables, Numerical Analysis of Multiscale Computations, Lecture Notes Comput. Sci. Eng. 82, Springer, Berlin (2012), 47–70.

  • 5

    X. Blanc, R. Costaouec, C. Le Bris and F. Legoll, Variance reduction in stochastic homogenization using antithetic variables, Markov Process. Related Fields 18 (2012), 1, 31–66; preliminary version available at http://cermics.enpc.fr/~legoll/hdr/FL24.pdf.

  • 6

    A. Bourgeat and A. Piatnitski, Approximations of effective coefficients in stochastic homogenization, Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004), 2, 153–165.

  • 7

    D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Ser. Math. Appl. 17, Clarendon Press, Oxford, 1999.

  • 8

    R. Costaouec, Asymptotic expansion of the homogenized matrix in two weakly stochastic homogenization settings, Appl. Math. Res. Express. AMRX 2012 (2012), 1, 76–104.

  • 9

    R. Costaouec, C. Le Bris and F. Legoll, Variance reduction in stochastic homogenization: Proof of concept, using antithetic variables, Bol. Soc. Esp. Mat. Apl. 50 (2010), 9–27.

  • 10

    A. Dembo and O. Zeitouni, Refinements of the Gibbs conditioning principle, Probab. Theory Related Fields 104 (1996), 1, 1–14.

  • 11

    B. Engquist and P. E. Souganidis, Asymptotic and numerical homogenization, Acta Numer. 17 (2008), 147–190.

  • 12

    A. Gloria, S. Neukamm and F. Otto, Quantification of ergodicity in stochastic homogenization: Optimal bounds via spectral gap on Glauber dynamics, Invent. Math. 199 (2015), 2, 455–515.

  • 13

    A. Gloria and F. Otto, Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization, ESAIM Proc. 48 (2015), 80–97.

  • 14

    V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994.

  • 15

    S. M. Kozlov, Averaging of random structures, USSR Dokl. 241 (1978), 5, 1016–1019.

  • 16

    C. Le Bris, Some numerical approaches for “weakly” random homogenization, Numerical Mathematics and Advanced Applications (ENUMATH 2009), Springer, Berlin (2010), 29–45.

  • 17

    F. Legoll and W. Minvielle, A control variate approach based on a defect-type theory for variance reduction in stochastic homogenization, Multiscale Model. Simul. 13 (2015), 2, 519–550.

  • 18

    F. Legoll and W. Minvielle, Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem, Discrete Contin. Dyn. Syst. Ser. S 8 (2015), 1, 1–27.

  • 19

    W. Minvielle, Quelques problèmes liés à l'erreur statistique en homogénéisation stochastique, Ph.D. thesis, Université Paris-Est, 2015; http://cermics.enpc.fr/theses/2015/minvielle.pdf.

  • 20

    J. Nolen, Normal approximation for a random elliptic equation, Probab. Theory Related Fields 159 (2014), 3–4, 661–700.

  • 21

    G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random Fields. Rigorous Results in Statistical Mechanics and Quantum Field Theory (Esztergom 1979), Colloq. Math. Soc. János Bolyai 10, North-Holland, Amsterdam (1981), 835–873.

  • 22

    A. N. Shiryayev, Probability, Grad. Texts in Math. 95, Springer, New York, 1984.

  • 23

    J. von Pezold, A. Dick, M. Friák and J. Neugebauer, Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al–Ti, Phys. Rev. B 81 (2010), 9, Article ID 094203.

  • 24

    S.-H. Wei, L. G. Ferreira, J. E. Bernard and A. Zunger, Electronic properties of random alloys: Special quasirandom structures, Phys. Rev. B 42 (1990), 15, Article ID 9622.

  • 25

    A. Zunger, S.-H. Wei, L. G. Ferreira and J. E. Bernard, Special quasirandom structures, Phys. Rev. Lett. 65 (1990), 3, Article ID 353.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues