A model for warm clouds with implicit droplet activation, avoiding saturation adjustment

Nikolas Porz 1 , Martin Hanke 2 , Manuel Baumgartner 3  and Peter Spichtinger 1
  • 1 Institute for Atmospheric Physics, Johannes Gutenberg University,, Mainz, Germany
  • 2 Institute of Mathematics, Johannes Gutenberg University,, Mainz, Germany
  • 3 Data Center, Johannes Gutenberg University,, Mainz, Germany


The representation of cloud processes inweather and climate models is crucial for their feedback on atmospheric flows. Since there is no general macroscopic theory of clouds, the parameterization of clouds in corresponding simulation software depends crucially on the underlying modeling assumptions. In this study we present a new model of intermediate complexity (a one-and-a-half moment scheme) for warm clouds, which is derived from physical principles. Our model consists of a system of differential-algebraic equations which allows for supersaturation and comprises intrinsic automated droplet activation due to a coupling of the droplet mass- and number concentrations tailored to this problem. For the numerical solution of this system we recommend a semi-implicit integration scheme, with effcient solvers for the implicit parts. The new model shows encouraging numerical results when compared with alternative cloud parameterizations, and it is well suited to investigate model uncertainties and to quantify predictability of weather events in moist atmospheric regimes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Sylwester Arabas and Shin-ichiro Shima. On the ccn (de) activation nonlinearities. Nonlinear processes in geophysics, 24(3): 535-542, 2017. 10.5194/npg-24-535-2017.

  • [2] K. D. Beheng. The Evolution of Raindrop Spectra: A Review of Microphysical Essentials. In F. Y. Testik and M. Gebremichael, editors, Rainfall: State of the Science, Geophysical Monograph Series, pages 29-48, 2010.

  • [3] B. J. Devenish, P. Bartello, J.-L. Brenguier, L. R. Collins, Wojciech W. Grabowski, R. H. A. IJzermans, Szymon P. Malinowski, M. W. Reeks, J. C. Vassilicos, L.-P. Wang, and Z. Warhaft. Droplet growth in warm turbulent clouds. Quarterly Journal of the Royal Meteorological Society, 138(667):1401-1429, 2012. ISSN 1477-870X. 10.1002/qj.1897. URL http://dx.doi.org/10.1002/qj.1897.

  • [4] J. Dixon. The Shock Absorber Handbook. Wiley, 2007. ISBN 978-0-470-51020-9.

  • [5] G. Doms, J. Förstner, E. Heise, H.-J. Herzog, D. Mironow, M. Raschendorfer, T. Reinhardt, B. Ritter, R. Schrodin, J.-P. Schulz, and G. Vogel. A description of the nonhydrostatic regional cosmo model. part ii: Physical parameterization, 2011.

  • [6] K. Gierens and S. Bretl. Analytical treatment of ice sublimation and test of sublimation parameterisations in two-moment ice microphysics models. Atmospheric Chemistry and Physics, 9(19):7481-7490, 2009. 10.5194/acp-9-7481-2009. URL https://www.atmos-chem-phys.net/9/7481/2009/.

  • [7] Wojciech W. Grabowski. Untangling microphysical impacts on deep convection applying a novel modeling methodology. Journal of the Atmospheric Sciences, 72(6):2446-2464, 2015. 10.1175/JAS-D-14-0307.1.

  • [8] Wojciech W. Grabowski and Dorota Jarecka. Modeling condensation in shallow nonprecipitating convection. Journal of the Atmospheric Sciences, 72(12):4661-4679, 2015. 10.1175/JAS-D-15-0091.1.

  • [9] Wojciech W. Grabowski and Hugh Morrison. Untangling microphysical impacts on deep convection applying a novel modeling methodology. part ii: Double-moment microphysics. Journal of the Atmospheric Sciences, 73(9):3749-3770, 2016.10.1175/JAS-D-15-0367.1.

  • [10] Wojciech W. Grabowski and Hugh Morrison. Modeling condensation in deep convection. Journal of the Atmospheric Sciences, 74(7):2247-2267, 2017. 10.1175/JAS-D-16-0255.1.

  • [11] WW Grabowski. A parameterization of cloud microphysics for long-term cloud-resolving modeling of tropical convection. Atmospheric Research, 52(1-2):17-41, 1999. 10.1016/S0169-8095(99)00029-0.

  • [12] Fritz Herbert and Ulrike Wacker. Parameterization of the ccn-humidity spectrum in dependency on nucleation conditions and aerosol size distribution. Meteorology and Atmospheric Physics, 68(3):213-220, 1998. ISSN 1436-5065. 10.1007/BF01030212. URL http://dx.doi.org/10.1007/BF01030212.

  • [13] Adele L. Igel and Susan C. van den Heever. The role of latent heating in warm frontogenesis. Quarterly Journal of the Royal Meteorological Society, 140(678, A):139-150, JAN 2014. 10.1002/qj.2118.

  • [14] H. Joos and H. Wernli. Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: a case-study with the limited-area model cosmo. Quarterly Journal of the Royal Meteorological Society, 138(663):407-418, 2012. 10.1002/qj.934. URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.934.

  • [15] Edwin Kessler. On the distribution and continuity of water substance in atmospheric circulations., volume 32 of Meteorological Monographs. American Meteorological Society, Boston, 1969.

  • [16] Alexander P. Khain, M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak. Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmospheric Research, 55(3-4):159 - 224, 2000. ISSN 0169-8095. <http://dx.doi.org/10.1016/S0169-> 8095(00)00064-8. URL http://www.sciencedirect.com/science/article/pii/S0169809500000648.

  • [17] VI Khvorostyanov. Mesoscale processes of cloud formation, cloud-radiation interaction, and their modeling with explicit cloud microphysics. Atmospheric Research, 39(1-3):1-67, 1995. 10.1016/0169-8095(95)00012-G.

  • [18] YL Kogan and WJ Martin. Parameterization of bulk condensation in numerical cloud models. Journal of the Atmospheric Sciences, 51(12):1728-1739, 1994. 10.1175/1520-0469(1994)051<1728:POBCIN>2.0.CO;2.

  • [19] H Köhler. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society, 32(2):1152-1161, 1936. 10.1039/tf9363201152.

  • [20] AV Korolev and IP Mazin. Supersaturation of water vapor in clouds. Journal of the Atmospheric Sciences, 60(24):2957-2974, 2003. 10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

  • [21] Y.L. Lin, R.D. Farley, and H.D. Orville. Bulk parameterization of the snow _eld in a cloud model. Journal of Climate and Applied Meteorology, 22(6):1065-1092, 1983. 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

  • [22] J.Y. Liu and H.D. Orville. Numerical modeling of precipitation and cloud shadow e_ects on mountain-induced cumuli. Journal of the Atmospheric Sciences, 26(6):1283-1298, 1969. 10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2.

  • [23] M. Lukácová-Medvid’ová, J. Rosemeier, P. Spichtinger, and B. Wiebe. IMEX finite volume methods for cloud simulation. In Finite volumes for complex applications VIII-hyperbolic, elliptic and parabolic problems, volume 200 of Springer Proc. Math. Stat., pages 179-187. Springer, Cham, 2017.

  • [24] Peter J.Marinescu, Susan C. van den Heever, Stephen M. Saleeby, Sonia M. Kreidenweis, and Paul J. DeMott. The microphysical roles of lower-tropospheric versus midtropospheric aerosol particles in mature-stage mcs precipitation. Journal of the Atmospheric Sciences, 74(11):3657-3678, NOV 2017. 10.1175/JAS-D-16-0361.1.

  • [25] A.W.Marshall, I. Olkin, and B. C. Arnold. Inequalities: Theory ofMajorization and Its Applications. Springer Series in Statistics. Springer, 2011. ISBN 978-0-387-40087-7. 10.1007/978-0-387-68276-1.

  • [26] J. S. Marshall and W. McK. Palmer. The distributions of raindrops with size. Journal of Meteorology, 5:165-166, 1948.

  • [27] H. Morrison and Wojciech W. Grabowski. Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. Journal of the Atmospheric Sciences, 64(8):2839-2861, 2007. 10.1175/JAS3980. URL http://dx.doi.org/10.1175/ JAS3980.

  • [28] H. Morrison, J. A. Curry, and V. I. Khvorostyanov. A new double-moment microphysics parameterization for application in cloud and climate models. part i: Description. Journal of the Atmospheric Sciences, 62(6):1665-1677, 2005. 10.1175/JAS3446.1. URL https://doi.org/10.1175/JAS3446.1.

  • [29] Hugh Morrison and Wojciech W. Grabowski. Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. Journal of the Atmospheric Sciences, 65(3):792-812, 2008. 10.1175/2007JAS2374.1.

  • [30] Hugh Morrison and Jason A. Milbrandt. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. part i: Scheme description and idealized tests. Journal of the Atmospheric Sciences, 72(1):287-311, 2015.10.1175/JAS-D-14-0065.1.

  • [31] DM Murphy and T Koop. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society, 131(608, B):1539-1565, 2005. 10.1256/qj.04.94.

  • [32] Ann Kristin Naumann and Axel Seifert. A lagrangian drop model to study warm rain microphysical processes in shallow cumulus. Journal of Advances in Modeling Earth Systems, 7(3):1136-1154, 2015. 10.1002/2015MS000456.

  • [33] M. D. Petters and S. M. Kreidenweis. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 7(8):1961-1971, 2007. 10.5194/acp-7-1961-2007.

  • [34] H.R. Pruppacher and J.D Klett. Microphysics of Clouds and Precipitation. Springer, 2010. 10.1007/978-0-306-48100-0.

  • [35] H.R. Pruppacher and R. Rasmussen. Wind-tunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. Journal of the Atmospheric Sciences, 36(7):1255-1260, 1979. 10.1175/1520- 0469(1979)036<1255:AWTIOT>2.0.CO;2.

  • [36] A. Seifert, U. Blahak, and R. Buhr. On the analytic approximation of bulk collision rates of non-spherical hydrometeors. Geoscientific Model Development, 7(2):463-478, 2014. 10.5194/gmd-7-463-2014.

  • [37] Axel Seifert and Klaus Dieter Beheng. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description. . Meteorology and Atmospheric Physics, 92:45-66, 2006.

  • [38] U. Wacker. Structual stability in cloud physics using parameterized microphysics. Beiträge zur Physik der Atmosphäre, 65: 231-242, 1992.

  • [39] U Wacker and A Seifert. Evolution of rain water pro_les resulting from pure sedimentation: Spectral vs. parameterized description. Atmospheric Research, 58(1):19-39, 2001. 10.1016/S0169-8095(01)00081-3.

  • [40] W Walter. Ordinary di_erential equations. Graduate texts in mathematics. Springer, 1998. ISBN 978-1-4612-6834-5. 10.1007/978-1-4612-0601-9.

  • [41] J. Warner. The microstructure of cumulus cloud. part i. general features of the droplet spectrum. Journal of the Atmospheric Sciences, 26(5):1049-1059, 1969. 10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2. URL http://dx.doi.org/10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2.

  • [42] Manfred Wendisch, Ulrich Pöschl, Meinrat O. Andreae, Luiz A. T. Machado, Rachel Albrecht, Hans Schlager, Daniel Rosenfeld, Scot T. Martin, Ahmed Abdelmonem, Armin Afchine, Alessandro C. Araùjo, Paulo Artaxo, Heinfried Aufmho_, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Bernhard Buchholz, Micael Amore Cecchini, Anja Costa, Joachim Curtius, Maximilian Dollner, Marcel Dorf, Volker Dreiling, Volker Ebert, André Ehrlich, Florian Ewald, Gilberto Fisch, Andreas Fix, Fabian Frank, Daniel Fütterer, Christopher Heckl, Fabian Heidelberg, Tilman Hüneke, Evelyn Jäkel, Emma Järvinen, Tina Jurkat, Sandra Kanter, Udo Kästner, Mareike Kenntner, Jürgen Kesselmeier, Thomas Klimach, Matthias Knecht, Rebecca Kohl, Tobias Kölling, Martina Krämer, Mira Krüger, Trismono Candra Krisna, Jost V. Lavric, Karla Longo, Christoph Mahnke, Antonio O. Manzi, Bernhard Mayer, Stephan Mertes, Andreas Minikin, Sergej Molleker, Ste_en Münch, Björn Nillius, Klaus Pfeilsticker, Christopher Pöhlker, Anke Roiger, Diana Rose, Dagmar Rosenow, Daniel Sauer, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Rodrigo A. F. de Souza, Antonio Spanu, Paul Stock, Daniel Vila, Christiane Voigt, Adrian Walser, David Walter, Ralf Weigel, Bernadett Weinzierl, Frank Werner, Marcia A. Yamasoe, Helmut Ziereis, Tobias Zinner, and Martin Zöger. Acridicon-chuva campaign: Studying tropical deep convective clouds and precipitation over amazonia using the new german research aircraft halo. Bulletin of the American Meteorological Society, 97(10):1885-1908, 2016. 10.1175/BAMS-D-14-00255.1.URL https://doi.org/10.1175/BAMS-D-14-00255.1.


Journal + Issues

Mathematics of Climate and Weather Forecasting (MCWF) is a fully peer-reviewed, open access journal that publishes articles that use new or existing mathematical methods in climate change science and weather forecasting. The scope includes, but is not limited to, numerical methods, stochastic processes, PDE analysis, time series analysis, data filtering and assimilation, applied to any topic of atmosphere and ocean sciences.