SATB2 haploinsufficiency in patients with cleft palate

Karin Writzl 1 , Luca Lovrečić 1 , Ján Vojtaššák 2 , and Borut Peterlin 1
  • 1 Division of Medical Genetics, Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
  • 2 Institute of Medical Biology and Genetics, School of Medicine, Comenius University, 81108, Bratislava, Slovakia


De novo translocation interrupting the transcription unit of SATB2 gene has been associated with cleft palate only (CPO). We tested for the presence of the copy number of SATB2 gene in a sample of 92 patients with CPO using a quantitative real-time PCR approach. In one patient (1%, 95% CI = 0.2%–6%), a 19 Mb de novo deletion encompassing the SATB2 gene was detected. These results suggest that SATB2 gene deletions do not play an important role in the etiology of cleft palate.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Gorlin R.J., Cohen M.M. Jr, Hennekam R.C.M., Syndromes of the head and neck, 4th ed., Oxford University Press, New York, 2001

  • [2] Brewer C.M., Leek J.P., Green A.J., Holloway S., Bonthron D.T., Markham A.F., FitzPatrick D.R., A locus for isolated cleft palate, located on human chromosome 2q32, Am. J. Hum. Genet., 1999, 65, 387–396

  • [3] FitzPatrick D.R., Carr I.M., McLaren L., Leek J.P., Wightman P., Williamson K., et al., Identification of SATB2 as the cleft palate gene on 2q32–q33, Hum. Mol. Genet., 2003, 12, 2491–2501

  • [4] Livak K.J., Comparative Ct method. ABI Prism 7700 Sequence Detection System, User Bulletin no. 2, PE Applied Biosystems, 1997

  • [5] Van Buggenhout G., Van Ravenswaaij-Arts C., Mc Maas N., Thoelen R., Vogels A., Smeets D., et al., The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients, Eur. J. Med. Genet. 2005, 48, 276–289

  • [6] Britanova O., Depew M.J., Schwark M., Thomas B.L., Miletich I., Sharpe P., Tarabykin V., Satb2 haploinsufficiency phenocopies 2q32–q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development, Am. J. Hum. Genet., 2006, 79, 668–678

  • [7] Lupski J.R., Stankiewicz P., Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes, PLoS. Genet., 2005, 1, e49

  • [8] Kondo S., Schutte B.C., Richardson R.J., Bjork B.C., Knight A.S., Watanabe Y., et al., Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes, Nat. Genet., 2002, 32, 285–289

  • [9] Marcano A.C., Doudney K., Braybrook C., Squires R., Patton M.A., Lees M.M., et al., TBX22 mutations are a frequent cause of cleft palate, J. Med. Genet., 2004, 41, 68–74

  • [10] Shi M., Mostowska A., Jugessur A., Johnson M.K., Mansilla M.A., Christensen K., et al., Identification of microdeletions in candidate genes for cleft lip and/or palate, Birth Defects Res. A Clin. Mol. Teratol., 2009, 85, 42–51

  • [11] Alkuraya F.S., Saadi I., Lund J.J., Turbe-Doan A., Morton C.C., Maas R.L., SUMO1 haploinsufficiency leads to cleft lip and palate, Science., 2006, 313, 1751

  • [12] Dobreva G., Dambacher J., Grosschedl R., SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression, Genes. Dev., 2003, 17, 3048–3061


Journal + Issues