Pathogenetic mechanisms of posttraumatic fibrosis of the uterus of white rats

Nikolay Novikov 1 , Sergey Dolomatov 2 , Walery Zukow 3 , Alla Volyanskaya 4 , Marek Napierala 5 , Magdalena Hagner-Derengowska 6 , Urszula Kazmierczak 7 , and Aleksander Skaliy 8
  • 1 Crimea State Medical University, Simferopol, Ukraine
  • 2 Odessa State Environmental University, Odessa, Ukraine
  • 3 Radom University, Radom, Poland
  • 4 Odessa State Medical University, Odessa, Ukraine
  • 5 Kazimierz Wielki University, Bydgoszcz, Poland
  • 6 Bydgoszcz University, Bydgoszcz, Poland
  • 7 Nicolaus Copernicus University, Collegium Medicum, Torun, Bydgoszcz, Poland
  • 8 University of Economy, Bydgoszcz, Poland

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Saed GM, Zhang W, Chegini N et al (1999) Alteration of type I and III collagen expression in human peritoneal mesothelial cells in response to hypoxia and transforming growth factor-β1. Wound Repair Regeneration 7(7):504–510 http://dx.doi.org/10.1046/j.1524-475X.1999.00504.x

  • [2] Saed GM, Diamond MP (2002) Hypoxia-induced irreversible up-regulation of type I collagen and transforming growth factor-beta1 in human peritoneal fibroblasts. Fertil Steril 78(1):144–147 http://dx.doi.org/10.1016/S0015-0282(02)03146-1

  • [3] Chegini N (2008) TGF-beta system: the principal profibrotic mediator of peritoneal adhesion formation. Semin Reprod Med 26(4):298–312 http://dx.doi.org/10.1055/s-0028-1082388

  • [4] Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science 118:4731–4739 http://dx.doi.org/10.1242/jcs.02605

  • [5] Klass BR, Grobbelaar AO, Rolfe KJ (2009) Transforming growth factor β1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgraduate Medical Journal 85:9–14 http://dx.doi.org/10.1136/pgmj.2008.069831

  • [6] Abe R, Donnelly SC, Peng T et al (2001) Peripheral Blood Fibrocytes: Differentiation Pathway and Migration to Wound Sites. The Journal of Immunology 166:7556–7562

  • [7] Chevronnay HP, Cornet PB, Delvaux D et al (2008) Opposite Regulation of Transforming Growth Factors-β2 and -β3 Expression in the Human Endometrium. Endocrinology 149(3):1015–1025 http://dx.doi.org/10.1210/en.2007-0849

  • [8] Mizobuchi M, Morrissey J, Finch JL et al (2007) Combination Therapy with an Angiotensin-Converting Enzyme Inhibitor and a Vitamin D Analog Suppresses the Progression of Renal Insufficiency in Uremic Rats. J Am Soc Nephrol 18:1796–1806 http://dx.doi.org/10.1681/ASN.2006091028

  • [9] Lower AM, Hawthorn RJS, Clark D et al (2004) on behalf of the Surgical and Clinical Research (SCAR) Group Adhesion-related readmissions following gynaecological laparoscopy or laparotomy in Scotland: an epidemiological study of 24 046 patients. Human Reproduction 19(8):1877–1885 http://dx.doi.org/10.1093/humrep/deh321

  • [10] Saed GM, Zhang W, Chegini N et al. (2000) Transforming growth factor beta isoforms production by human peritoneal mesothelial cells after exposure to hypoxia. Am J Reprod Immunol 43(5):285–291. http://dx.doi.org/10.1111/j.8755-8920.2000.430507.x

  • [11] Saed GM, Kruger M, Diamond MP (2004) Expression of transforming growth factor-β and extracellular matrix by human peritoneal mesothelial cells and by fibroblasts from normal peritoneum and adhesions: Effect of Tisseel. Wound Repair and Regeneration 12(5):557–564 http://dx.doi.org/10.1111/j.1067-1927.2004.012508.x

  • [12] Margetts PJ, Bonniaud Ph (2003) Basic mechanisms and clinical implications of peritomeal fibrosis. Peritoneal Dialysis International 23(6):530–541

  • [13] Nappi C, Di Spiezio Sardo A, Greco E et al (2007) Prevention of adhesions in gynaecological endoscopy. Human Reproduction Update 13(4):379–394 http://dx.doi.org/10.1093/humupd/dml061

  • [14] Binda MM, Molinas CR, Koninckx PR (2003) Reactive oxygen species and adhesion formation. Clinical implications in adhesion prevention. Human Reproduction 18(12):2503–2507 http://dx.doi.org/10.1093/humrep/deg481

  • [15] Nishimura H, Ito Y, Mizuno M et al (2008) Mineralocorticoid receptor blockade ameliorates peritoneal fibrosis in new rat peritonitis model. Am J Physiol Renal Physiol 294:F1084–F1093 http://dx.doi.org/10.1152/ajprenal.00565.2007

  • [16] Rout UK, Oommen K, Diamond MP (2000) Altered expressions of VEGF mRNA splice variants during progression of uterine-peritoneal adhesions in the rat. Am J Reprod Immunol 43(5):299–304 http://dx.doi.org/10.1111/j.8755-8920.2000.430509.x

  • [17] Deban L, Correale C, Vetrano S et al (2008) Multiple Pathogenic Roles of Microvasculature in Inflammatory Bowel Disease: A Jack of All Trades. American Journal of Pathology 172:1457–1466 http://dx.doi.org/10.2353/ajpath.2008.070593

  • [18] Matsuzaki S, Canis M, Bazin J-E et al (2007) Effects of supplemental perioperative oxygen on postoperative abdominal wound adhesions in a mouse laparotomy model with controlled respiratory support. Human Reproduction 22(10):2702–2706 http://dx.doi.org/10.1093/humrep/dem114

  • [19] Al-Badr W, Martin KJ (2008) Vitamin D and Kidney Disease. Clin J Am Soc Nephrol 3:1555–1560 http://dx.doi.org/10.2215/CJN.01150308

  • [20] Subramaniam N, Leong GM, Cock T-A et al (2001) Cross-talk between 1,25-Dihydroxyvitamin D3 and Transforming Growth Factor-beta Signaling Requires Binding of VDR and Smad3 Proteins to Their Cognate DNA Recognition Elements. J Biol Chem 276(19):15741–15746 http://dx.doi.org/10.1074/jbc.M011033200

  • [21] Rodriguez-Iturbe B, Vaziri ND (2007) Salt-sensitive hypertension—update on novel findings. Nephrology Dialysis Transplantation 22(4):992–995 http://dx.doi.org/10.1093/ndt/gfl757

  • [22] Tian J, Liu Y, Williams LA, de Zeeuw D (2007) Potential role of active vitamin D in retarding the progression of chronic kidney disease. Nephrology Dialysis Transplantation 22(2):321–328 http://dx.doi.org/10.1093/ndt/gfl595

  • [23] Tan X, Li Y, Liu Y (2006) Paricalcitol Attenuates Renal Interstitial Fibrosis in Obstructive Nephropathy. J Am Soc Nephrol 17:3382–3393 http://dx.doi.org/10.1681/ASN.2006050520

  • [24] Koleganova N, Piecha G, Ritz E, Gross M-L (2009) Calcitriol ameliorates capillary deficit and fibrosis of the heart in subtotally nephrectomized rats. Nephrology Dialysis Transplantation 24(3):778–787 http://dx.doi.org/10.1093/ndt/gfn549

  • [25] Hathcock JN, Shao A, Vieth R, Heaney R (2007) Risk assessment for vitamin D. American Journal of Clinical Nutrition 85(1):6–18

  • [26] Holick MF (2007) Vitamin D Deficiency. N Engl J Med 357(3):266–281 http://dx.doi.org/10.1056/NEJMra070553

  • [27] Liu PT, Stenger S, Li H et al (2006) Vitamin D3-Triggered Antimicrobial Response-Another Pleiotropic Effect beyond Mineral and Bone Metabolism. J Am Soc Nephrol 17:2949–2953 http://dx.doi.org/10.1681/ASN.2006091030

  • [28] Evans KN, Nguyen L, Chan J et al (2006) Effects of 25-Hydroxyvitamin D3 and 1,25-Dihydroxyvitamin D3 on Cytokine Production by Human Decidual Cells. Biol Reprod 75:816–822 http://dx.doi.org/10.1095/biolreprod.106.054056

  • [29] Dong X, Craig Th, Xing N et al (2003) Direct Transcriptional Regulation of RelB by 1-alpha,25-Dihydroxyvitamin D3 and Its Analogs. Physiologic and therapeutic implications for dendritic cell function. J Biol Chem 278(49):49378–49385 http://dx.doi.org/10.1074/jbc.M308448200

  • [30] Hewison M, Freeman L, Hughes SV et al (2003) Differential Regulation of Vitamin D Receptor and Its Ligand in Human Monocyte-Derived Dendritic Cells. The Journal of Immunology 170:5382–5390

  • [31] Lipscomb MF, Masten BJ (2002) Dendritic Cells: Immune Regulators in Health and Disease. Physiological Reviews 82(1):97–130

  • [32] Riboldi E, Musso T, Moroni E et al (2005) Cutting Edge: Proangiogenic Properties of Alternatively Activated Dendritic Cells. The Journal of Immunology 175:2788–2792

  • [33] Webster B, Ekland EH, Agle LM et al (2006) Regulation of lymph node vascular growth by dendritic cells. J Exp Med 203(8):1903–1913 http://dx.doi.org/10.1084/jem.20052272

  • [34] Mantell DJ, Owens PE, Bundred NJ et al (2000) 1alpha,25-Dihydroxyvitamin D3 Inhibits Angiogenesis In Vitro and In Vivo. Circulation Research 87:214–220

  • [35] Jones RL, Stoikos Ch, Findlay JK, Salamonsen LA (2006) TGF-ß superfamily expression and actions in the endometrium and placenta. Reproduction 132:217–232 http://dx.doi.org/10.1530/rep.1.01076

  • [36] Zhong Z, Patel AN, Ichim ThE et al (2009) Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med 7:15 http://dx.doi.org/10.1186/1479-5876-7-15

  • [37] Sanders PW (2004) Salt intake, endothelial cell signaling and progression of kidney disease. Hypertension 43:142–146 http://dx.doi.org/10.1161/01.HYP.0000114022.20424.22

  • [38] Rodriguez-Iturbe B, Vaziri ND (2007) Salt-sensitive hypertension—update on novel findings. Nephrology Dialysis Transplantation 22(4):992–995 http://dx.doi.org/10.1093/ndt/gfl757

  • [39] Cines DB, Pollak ES, Buck CA et al (1998) Endothelial Cells in Physiology and in the Pathophysiology of Vascular Disorders. Blood 91(10):3527–3561

  • [40] Kowanetz M, Ferrara N (2008) Vascular Endothelial Growth Factor Signaling Pathways: Therapeutic Perspective. AACR Education Book P.173–181

  • [41] Gilabert-Estellés J, Ramón LA, España F et al (2007) Expression of angiogenic factors in endometriosis: relationship to fibrinolytic and metalloproteinase systems. Human Reproduction 22(8):2120–2127 http://dx.doi.org/10.1093/humrep/dem149

  • [42] Schaper W, Scholz D (2003) Factors Regulating Arteriogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 23:1143–1151 http://dx.doi.org/10.1161/01.ATV.0000069625.11230.96

  • [43] Vallance BA, Gunawan M, Hewlett B et al (2005) TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol 289:G116–G128 http://dx.doi.org/10.1152/ajpgi.00051.2005

OPEN ACCESS

Journal + Issues

Search