Oscillation criteria for differential equations of second order

A. Nandakumaran 1  and S. Panigrahi 1
  • 1 Department of Mathematics, Indian Institute of Science, Bangalore, 560 012, India

Abstract

In this article, we give sufficient condition in the form of integral inequalities to establish the oscillatory nature of non linear homogeneous differential equations of the form $$ (r(t)y')' + q(t)y' + p(t)f(y)g(y') = 0, t \geqslant t_0 , $$ where r, q, p, f and g are given data. We do this by separating the two cases f is monotonous and non monotonous.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] BURTON, T. A.— GRIMER, R.: Stability properties of (ru′)′+ af(u)g(u′) = 0, Monatsh. Math. 74 (1970), 211–222. http://dx.doi.org/10.1007/BF01303441

  • [2] CASSELL, J.S.: The assymptotic behaviour of a class of linear oscillatore, Quart. J. Math. Oxford Ser. (3) 32 (1981), 287–302. http://dx.doi.org/10.1093/qmath/32.3.287

  • [3] COPPEL, W.A.: Stability and Asymptotic Behaviour of Differential Equations, Heath, Boston, 1965.

  • [4] EL-SAYED, M.A. An oscillation criterion for a forced second order linear differential equations, Proc. Amer. Math. Soc. 118 (1993), 813–817. http://dx.doi.org/10.2307/2160125

  • [5] GRACE, S. R.— LALLI, B. S.: An oscillation criterion for second order strongly sublinear differential equations, J. Math. Anal. Appl. 123 (1987), 584–588. http://dx.doi.org/10.1016/0022-247X(87)90333-7

  • [6] GRAEF, J. R.— SPIKES, P. W.: Asymptotic behaviour of solution of a second order nonlinear differential equations, J. Differential Equations 17 (1975), 451–476. http://dx.doi.org/10.1016/0022-0396(75)90056-X

  • [7] GRAEF, J. R.— SPIKES, P. W.: Boundedness and convergence to zero of solutions of a forced second order nonlinear differential equations, J. Math. Anal. Appl. 62 (1978), 295–309. http://dx.doi.org/10.1016/0022-247X(78)90127-0

  • [8] HARDY, G. H.— LITTLEWOOD, J. E.— POLYA, G.: Inequalities, Cambridge University Press, Cambridge, 1988.

  • [9] HUANG, C.C.: Oscillation and nonoscillation for second order linear differential equations, J. Math. Anal. Appl. 210 (1997), 712–723. http://dx.doi.org/10.1006/jmaa.1997.5428

  • [10] KARTSATOUS, A.G.: Maintenance of oscillations under the effect of periodic forcing term, Proc. Amer. Math. Soc. 33 (1972), 377–383. http://dx.doi.org/10.2307/2038064

  • [11] KEENER, M.S.: Solutions of a certain linear homogeneous second order differential equations, Appl. Anal. 1 (1971), 57–63. http://dx.doi.org/10.1080/00036817108839006

  • [12] KONG, Q.: Interval criteria for oscillation of second order linear ordinary differential equations, J. Math. Anal. Appl. 229 (1999), 258–270. http://dx.doi.org/10.1006/jmaa.1998.6159

  • [13] LALLI, B.S.: On boundedness of solutions of certain second order differential equations, J. Math. Anal. Appl. 25 (1969), 182–188. http://dx.doi.org/10.1016/0022-247X(69)90221-2

  • [14] LEIGHTON, W.: Comparison theorems for linear differential equations of second order, Proc. Amer. Math. Soc. 13 (1962), 603–610. http://dx.doi.org/10.2307/2034834

  • [15] LI, W.T.: Oscillation of certain second-order nonlinear differential equations, J. Math. Anal. Appl. 217 (1998), 1–14. http://dx.doi.org/10.1006/jmaa.1997.5680

  • [16] LI, W. T.— AGARWAL, R. P.: Interval oscillation criteria related to integral averaging technique for certain nonlinear differential equations, J. Math. Anal. Appl. 245 (2000), 171–188. http://dx.doi.org/10.1006/jmaa.2000.6749

  • [17] LI, W. T.— AGARWAL, R. P.: Interval oscillation criteria for second order nonlinear differential equations with damping, Comput. Math. Appl. 40 (2000), 217–230. http://dx.doi.org/10.1016/S0898-1221(00)00155-3

  • [18] LI, W. T.— AGARWAL, R. P.: Interval oscillation criteria for a forced nonlinear ordinary differential equations, Appl. Anal. 75 (2000), 341–347. http://dx.doi.org/10.1080/00036810008840853

  • [19] LI, W. T.— AGARWAL, R. P.: Interval oscillation criteria for second order forced nonlinear differential equations with damping, Panamer. Math. J. 11 (2001), 109–117.

  • [20] LI, W. T.— ZHANG, M. Y.— FEI, X. L.: Oscillation criteria for a second order nonlinear differential equation with damping term, Indian J. Pure Appl. Math. 30 (1999), 1017–1029.

  • [21] PARHI, N.— PANIGRAHI, S.: Disfocality and Liapunov type inequalies for third order equations, Appl. Math. Lett. 16 (2003), 227–233. http://dx.doi.org/10.1016/S0893-9659(03)80036-8

  • [22] RAGOVCHENKO, Y. V.: Oscillation criteria for certain nonlinear differential equations, J. Math. Anal. Appl. 229 (1999), 399–416. http://dx.doi.org/10.1006/jmaa.1998.6148

  • [23] RAINKEIN, S. M.: Oscillation theorems for second order nonhomogeneous linear differential equations, J. Math. Anal. Appl. 53 (1976), 550–553. http://dx.doi.org/10.1016/0022-247X(76)90091-3

  • [24] SKIDMORE, A.— LEIGHTON, W.: On the equation y″ + p(x)y = f(x), J. Math. Anal. Appl. 43 (1973), 46–55. http://dx.doi.org/10.1016/0022-247X(73)90256-4

  • [25] SKIDMORE, A.— BOWERS, J. J.: Oscillatory behaviour of solutions of y″ + p(x)y = f(x), J. Math. Anal. Appl. 49 (1975), 317–323. http://dx.doi.org/10.1016/0022-247X(75)90183-3

  • [26] TEUFEL, H.: Forced second order nonlinear oscillations, J. Math. Anal. Appl. 40 (1972), 148–152. http://dx.doi.org/10.1016/0022-247X(72)90037-6

  • [27] WONG, J. S.: Oscillation criteria for a forced second order linear differential eqations, J. Math. Anal. Appl. 231 (1999), 235–240. http://dx.doi.org/10.1006/jmaa.1998.6259

  • [28] WONG, J. S.— BURTON, T. A.: Some properties of solution of u″ + a(t)f(u)g(u′) = 0, Monatsh. Math. 69 (1965), 364–374. http://dx.doi.org/10.1007/BF01297623

  • [29] UTZ, W. R.: Properties of solutions of u″ + g(t)u 2n−1 = 0, Monatsh. Math. 66 (1962), 56–60. http://dx.doi.org/10.1007/BF01418878

OPEN ACCESS

Journal + Issues

Search