The boundary value problems of quadratic mixed type of delay differential equations with eigenvalues

Zhimin He 1  and Jianhua Shen 2
  • 1 Tianmu College, Zhejiang A and F University, 311300, Hangzhou, P. R. China
  • 2 Department of Mathematics, Hangzhou Normal University, Zhejiang, 310036, Hangzhou P. R. China

Abstract

In this paper, by using a fixed-point theorem in cones to study the boundary value problem for a class of quadratic mixed type of delay differential equations with eigenvalue, the sufficient condition of existence of their solutions is derived. The main results in this paper are the generalization and improvement of those existing ones.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] AVERY, R. I.— PETERSON, A. C.: Three positive fixed points of nonlinear operators on ordered Banach space, Comput. Math. Appl. 42 (2001), 313–322. http://dx.doi.org/10.1016/S0898-1221(01)00156-0

  • [2] AVERY, R. I.— HENDERSON, J.: Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian, J. Math. Anal. Appl. 277 (2003), 395–404. http://dx.doi.org/10.1016/S0022-247X(02)00308-6

  • [3] BAI, D.— XU, Y.: Positive solutions and eigenvalue regions of two-delay singular systems with a twin parameter, Nonlinear. Anal. 66 (2007), 2547–2564. http://dx.doi.org/10.1016/j.na.2006.03.038

  • [4] GUO, D.— LAKSHMIKANTHAM, V.: Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.

  • [5] JIANG, D. Q.— GUO, L.— WANG, J. Y.: On boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 116 (2000), 231–241. http://dx.doi.org/10.1016/S0377-0427(99)00314-3

  • [6] JIANG, D. Q.: Multiple positive solutions for boundary value problems of second-order delay differential equations, Appl. Math. Lett. 15 (2002), 575–583. http://dx.doi.org/10.1016/S0893-9659(02)80009-X

  • [7] BAI, D. Y.— XU, Y. T.: Existence of positive solutions for boundary-value problems of second-order delay differential equations, Appl. Math. Lett. 18 (2005), 621–630. http://dx.doi.org/10.1016/j.aml.2004.07.022

  • [8] CHEN, G. P.— SHEN, J. H.— WANG, W. B.: Solvability of three point boundary value problems for second order integro-differential equations of mixed type, J. Integral Equations Appl. 21 (2009), 21–37. http://dx.doi.org/10.1216/JIE-2009-21-1-21

  • [9] HE, Z. M.— HE, X. M.: Periodic boundary value problems for first order impulsive integro differential equations of mixed type, J. Math. Anal. Appl. 296 (2004), 8–20. http://dx.doi.org/10.1016/j.jmaa.2003.12.047

  • [10] HENDERSON, J.: Boundary Value Problems for Functional Equations, World Scientific, Hackensack, NJ, 1995. http://dx.doi.org/10.1142/2884

  • [11] HENDERSON, J.— THOMPSON, H. B.: Existence and multiple solutions for second order boundary value problems, J. Differential Equations 166 (2000), 443–454. http://dx.doi.org/10.1006/jdeq.2000.3797

  • [12] HENDERSON, J.— WANG, H. Y.: Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl. 208 (1997), 252–259. http://dx.doi.org/10.1006/jmaa.1997.5334

  • [13] HALE, J. K.— HUANG, W.: Global geometry of stable regions for two delay differential equations, J. Math. Anal. Appl. 178 (1993), 344–362. http://dx.doi.org/10.1006/jmaa.1993.1312

  • [14] LI, J. L.— SHE, J. H.: Existence of three positive solutions for boundary value problems with p-Laplacian, J. Math. Anal. Appl. 311 (2005), 457–465. http://dx.doi.org/10.1016/j.jmaa.2005.02.054

  • [15] LEE, J. W.— O’REGAN, D.: Existence results for differential delay equations, J. Differential Equations 102 (1993), 342–359. http://dx.doi.org/10.1006/jdeq.1993.1033

  • [16] LEE, Y.: Multiplicity of Positive solutions for multiparameter semilinear elliptic systems, J. Differential Equations 174 (2007), 420–441. http://dx.doi.org/10.1006/jdeq.2000.3915

  • [17] MA, R. Y.: Existence theorem for second order boundary value problem, J. Math. Anal. Appl. 212 (1997), 430–442. http://dx.doi.org/10.1006/jmaa.1997.5515

  • [18] WANG, W. B.— SHEN, J. H.: Positive solutions to a multi-point boundary value problem with delay, Appl. Math. Comput. 188 (2007), 96–102. http://dx.doi.org/10.1016/j.amc.2006.09.093

  • [19] ZHANG, Z. G.— WANG, J. Y.: Positive solutions to a second order three-point boundary value problem, J. Math. Anal. Appl. 285 (2003), 273–294.

OPEN ACCESS

Journal + Issues

Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process.

Search