Closed hereditary coreflective subcategories in epireflective subcategories of Top

Veronika Pitrová 1
  • 1 Department of Mathematics Faculty of Science J. E. Purkyně University České Mládeže 8 400 96 Ústí nad Labem Czech Republic
Veronika Pitrová

Abstract

The aim of this paper is to investigate closed hereditary coreflective subcategories in epireflective subcategories A of Top, mainly in the case that ZDATych. Particularly the closed hereditary coreflective hull of the one-point compactification of the discrete space on the set of all non-negative integers in such epireflective subcategories is studied. It is proved that under some set-theoretic assumptions it is the whole category A.

  • [1]

    Adámek, J.—Herrlich, H.—Strecker, G. E.: Abstract and concrete categories, online edition, available from http://katmat.math.uni-bremen.de/acc

  • [2]

    Arkhangel’skii, A. V.—Ponomarev, V. I.: Fundamentals of General Topology: Problems and Exercises, D. Reidel Publishing Company, Dordrecht, 1983.

  • [3]

    Balcar, B.—Hušek, M.: Sequentially continuous mappings and realvalued measurable cardinals, Topology Appl. 111 (2001), 49–58.

    • Crossref
    • Export Citation
  • [4]

    Bukovský, L.: The Structure of the Real Line, VEDA, Vydavatel’stvo Slovenskej akadémie vied, Bratislava, 1979.

  • [5]

    Choodnovsky, D. V.: Sequentially continuous mappings and realvalued measurable cardinals, In: Infinite and finite sets, Keszthely, 1973, Colloq. Math. Soc. János Bolyai 10 (1975) 275–288.

  • [6]

    Člnčura, J.: Heredity and coreflective subcategories of the category of topological spaces, Appl. Categ. Structures 9 (2001), 131–138.

    • Crossref
    • Export Citation
  • [7]

    Člnčura, J.: Hereditary coreflective subcategories of categories of topological spaces, Appl. Categ. Structures 13 (2005), 329–342.

    • Crossref
    • Export Citation
  • [8]

    Člnčura, J.: Hereditary coreflective subcategories of the categories of Tychonoff and zero-dimensional spaces, Appl. Categ. Structures 21 (2013), 671–679.

    • Crossref
    • Export Citation
  • [9]

    Engelking, R.: General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.

  • [10]

    Herrlich, H.—Hušek, M.: Some open categorical problems in Top, Appl. Categ. Structures 1 (1993), 1–19.

    • Crossref
    • Export Citation
  • [11]

    Lacková, V.: Closed hereditary additive and divisible subcategories in epireflective subcategories of Top, Acta Math. Univ. Comenian. 83 (2014), 135–146.

  • [12]

    Noble, N.: The continuity of functions on cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187–198.

    • Crossref
    • Export Citation
  • [13]

    Sleziak, M.: On hereditary coreflective subcategories of Top, Appl. Categ. Structures 12 (2004), 301–317.

    • Crossref
    • Export Citation
  • [14]

    Sleziak, M.: Hereditary, additive and divisible classes in epireflective subcategories of Top, Appl. Categ. Structures 16 (2008), 451–478.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process.

Search