Remarks on b-Metric and metric-preserving functions

Tammatada Khemaratchatakumthorn 1  and Prapanpong Pongsriiam 1
  • 1 Department of Mathematics, Nakhon Pathom 73000, Nakhon Pathom, Thailand
Tammatada Khemaratchatakumthorn
  • Department of Mathematics, Faculty of Science Silpakorn University, Nakhon Pathom 73000, Nakhon Pathom, Thailand
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Prapanpong Pongsriiam
  • Corresponding author
  • Department of Mathematics, Faculty of Science Silpakorn University, Nakhon Pathom 73000, Nakhon Pathom, Thailand
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

We introduce new classes of functions related to metric-preserving functions and b-metrics. We investigate their properties and compare them to those of metric-preserving functions.

  • [1]

    BAKHTIN, I. A.: The contraction mapping principle in quasimetric spaces, Funct. Anal. 30 (1989), 26–37.

  • [2]

    BORSÍK, J.—DOBOŠ, J.: On metric preserving functions, Real Anal. Exchange 13 (1987–88), 285–293.

  • [3]

    BORSÍK, J.—DOBOŠ, J.: Functions whose composition with every metric is a metric, Math. Slovaca 31 (1981), 3–12.

  • [4]

    CORAZZA, P.: Introduction to metric-preserving functions, Amer. Math. Monthly 106(4) (1999), 309–323.

  • [5]

    DAS, P. P.: Metricity preserving transforms, Pattern Recognition Letters 10 (1989), 73–76.

  • [6]

    DOBOŠ, J.: Metric Preserving Functions, Online Lecture Notes available at http://web.science.upjs.sk/jozefdobos/wp-content/uploads/2012/03/mpf1.pdf

  • [7]

    DOBOŠ, J.: On modification of the Euclidean metric on reals, Tatra Mt. Math. Publ. 8 (1996), 51–54.

  • [8]

    DOBOŠ, J.: A survey of metric-preserving functions, Questions Answers Gen. Topology 13 (1995), 129–133.

  • [9]

    DOBOŠ, J.—PIOTROWSKI, Z.: When distance means money, Internat. J. Math. Ed. Sci. Tech. 28 (1997), 513–518.

  • [10]

    DOBOŠ, J.—PIOTROWSKI, Z.: A note on metric-preserving functions, Int. J. Math. Math. Sci. 19 (1996), 199–200.

  • [11]

    DOBOŠ, J.—PIOTROWSKI, Z.: Some remarks on metric-preserving functions, Real Anal. Exchange 19 (1993–94), 317–320.

  • [12]

    KELLY, J.: General Topology, Springer-Verlag, 1955.

  • [13]

    KIRK, W.A.—SHAHZAD, N.: Fixed Point Theory in Distance Spaces, Springer International Publishing Switzerland, 2014.

  • [14]

    PETRUŞEL, A.—RUS, I. A.—ŞERBAN, M. A.: The role of equivalent metrics in fixed point theory, Topol. Methods Nonlinear Anal. 41(1), (2013), 85–112.

  • [15]

    PIOTROWSKI, Z.—VALLIN, R. W.: Functions which preserve Lebesgue spaces, Comment. Math. Prace Mat. 43(2) (2003), 249–255.

  • [16]

    POKORNÝ, I.: Some remarks on metric-preserving functions, Tatra Mt. Math. Publ. 2 (1993), 65–68.

  • [17]

    PONGSRIIAM, P.—TERMWUTTIPONG, I.: On metric-preserving functions and fixed point theorems, Fixed Point Theory Appl. (2014), 2014:179, 14 pp.

  • [18]

    PONGSRIIAM, P.—TERMWUTTIPONG, I.: Remarks on ultrametrics and metric-preserving functions, Abstr. Appl. Anal. (2014), Article ID 163258, 9 pp.

  • [19]

    SREENIVASAN, T. K.: Some properties of distance functions, J. Indian. Math. Soc. (N.S.) 11 (1947), 38–43.

  • [20]

    TERMWUTTIPONG, I.—OUDKAM, P.: Total boundedness, completeness and uniform limits of metric-preserving functions, Ital. J. Pure Appl. Math. 18 (2005), 187–196.

  • [21]

    VALLIN, R. W.: Continuity and differentiability aspects of metric preserving functions, Real Anal. Exchange 25(2) (1999/2000), 849–868.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


Journal + Issues

Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process.

Search