Application of tan(φ(ξ)/2)-expansion method to burgers and foam drainage equations

Nematollah Kadkhoda 1  und Michal Fečkan 2 , 3
  • 1 Department of Mathematics, Faculty of Basic Sciences Bozorgmehr University Of Qaenat, Qaenat, Iran
  • 2 Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava Mlynská dolina, 842 48, Bratislava, Slovakia
  • 3 Mathematical Institute of Slovak Academy of Sciences, Štefánikova, 49, 814 73, Bratislava, Slovakia
Nematollah Kadkhoda
  • Korrespondenzautor
  • Department of Mathematics, Faculty of Basic Sciences Bozorgmehr University Of Qaenat, Qaenat, Iran
  • E-Mail
  • Suche nach weiteren Artikeln:
  • degruyter.comGoogle Scholar
und Michal Fečkan
  • Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava Mlynská dolina, 842 48, Bratislava, Slovakia
  • Mathematical Institute of Slovak Academy of Sciences, Štefánikova, 49, 814 73, Bratislava, Slovakia
  • E-Mail
  • Suche nach weiteren Artikeln:
  • degruyter.comGoogle Scholar

Abstract

In this paper, we consider a new direct approach namely the tan(φ(ξ)/2)-Expansion Method to obtain analytical solutions of Burgers and foam drainage equations. With this method, further solutions can be obtained comparing with other techniques and approaches. We use of Mathematica for obtaining these solutions.

  • [1]

    BAKODAH, H. O., AL-ZAID, N. A., MIRZAZADEH, M., ZHOU, Q.: Decomposition method for solving Burgers equation with Dirichlet and Neumann boundary conditions, Optik 130 (2017), 1339–1346.

  • [2]

    BEKIR, A., TASCAN, F., UNSAL, O.: Exact solutions of the Zoomeron and Klein Gordon Zahkharov equations, J. Assoc. Arab Univ. Basic Appl. Sci. 17 (2015), 1–5.

  • [3]

    BIAZAR, J., AMINIKHAH, H.: Exact and numerical solutions for non-linear Burgers equation by VIM, Math. Comput. Modelling 49 (2009), 1394–1400.

  • [4]

    BURGERS, J. M.: A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1 (1948), 171–199.

  • [5]

    DURANDA, M., LANGEVIN, D.: Physicochemical approach to the theory of foam drainage, Eur. Phys. J. E. 7 (2002), 35–44.

  • [6]

    GOL DFARB, I. I., KANN, K.B., SHREIBER, I. R.: Liquid flow in foams, Fluid Dyn. 23 (1988), 244–249.

  • [7]

    HE, J. H., WU, X. H.: Exp-function method for nonlinear wave equations, Chaos. Solitons. Fractals. 30 (2006), 700–708.

  • [8]

    HELAL, M. A., MEHANNA, M. S.: The Tanh method and Adomian decomposition method for solving the foam drainage equation, Appl. Math. Comput. 190 (2007), 599–609.

  • [9]

    HILGENFELDT, S., KOEHLER, S. A., STONE, H. A.: Dynamics of coarsening foams: accelerated and self-limiting drainage, Phys. Rev. Lett. 86 (2001), 4704-4707.

  • [10]

    HIROTA, R.: Exact solution of the KdV equation for multiple collisions of solutions, Phys. Rev. Lett. 27 (1971), 1192–1194.

  • [11]

    JAFARI, H., KADKHODA, N., BISWAS, A.: The G′/G-expansion method for solutions of evolution equations from isothermal magnetostatic atmospheres, J. King. Saud. Univ. Sci. 25 (2013), 57–62.

  • [12]

    JAFARI, H., KADKHODA, N., KHALIQUE, C. M.: Travelling wave solutions of nonlinear evolution equations using the simplest equation method, Comput. Math. Appl. 64 (2012), 2084–2088.

  • [13]

    JAFARI, H., TAJADODI, H., KADKHODA, N., BALEANU, D.: Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations, Abstr. Appl. Anal., http://dx.doi.org/10.1155/2013/587179.

  • [14]

    KADKHODA, N., JAFARI, H.: Analytical solutions of the Gerdjikov-Ivanov equation by using exp (-φ(ξ))-expansion method, Optik 139 (2017), 72–76.

  • [15]

    KUDRYASHOV, N. A.: On types of nonlinear integrable equations with exact solutions, Phys. Lett. A 155 (1991), 269–275.

  • [16]

    LI, C., CHEN, A., YE, J.: Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys. 230 (2011), 3352–3368.

  • [17]

    MANAFIAN, J., LAKESTANI, M.: Optical soliton solutions for the Gerdjikov-Ivanov model via tan (φ/2)-expansion method, Optik 127 (2016), 9603–9620.

  • [18]

    MOMANI, S., ODIBAT, Z.: A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor s formula, J. Comput. Appl. Math. 220 (2008), 85–95.

  • [19]

    PRUDHOMME, R. K., KHAN, S. A.: Foams: Theory, Measurements and Applications, New York, Dekker, 1996.

  • [20]

    SABATIER, J., OUSTALOUP, A., TRIGEASSON, J. C., MAAMRI, N.: A Lyapunov approach to the stability of fractional differential equations, Signal Process. 91 (2011), 437–445.

  • [21]

    WANG, D. S., REN, Y. J., ZHANG, H. Q.: Further extended sinh-cosh and sin-cos methods and new non traveling wave solutions of the 2+1 -dimensional dispersive long wave equations, Appl. Math. E-Notes. 5 (2005), 157–163.

  • [22]

    WAZWAZ, A. M.: A sine cosine method for handling nonlinear wave equations, Math. Comput. Modelling 40 (2004), 499–508.

  • [23]

    WAZWAZ, A. M.: The tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos. Solitons. Fractals. 25 (2005), 55–63.

  • [24]

    WAZWAZ, A. M.: Travelling wave solutions of generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations, Appl. Math. Comput. 169 (2005), 639–656.

  • [25]

    WEAIRE, D., HUTZLER, S.: The Physics of Foams, Oxford University Press, Oxford, 2000.

  • [26]

    YANG, X.: Local fractional integral transforms, Prog. Nonlinear Sci. 4 (2011), 221–225.

  • [27]

    ZHANG, J., JIANG, F., ZHAO, X.: An improved (G′/G)-expansion method for solving nonlinear evolution equations, Int. J. Comput. Math. 87 (2010), 1716–1725.

Artikel kaufen
Erhalten sie sofort unbegrenzten Zugriff auf den Artikel.
Anmelden
Haben Sie den Zugang bereits erworben? Melden Sie sich bitte an.


oder
Zugriff über Ihre Institution

Zeitschrift + Hefte

Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process.

Suche