Bn-maximal operator and Bn-singular integral operators on variable exponent Lebesgue spaces

Ismail Ekincioglu 1 , Vagif S. Guliyev 1 , 2 ,  and Esra Kaya 1
  • 1 Department of Mathematics, Dumlupinar University, 43100, Kutahya, Turkey
  • 2 Institute of Mathematics and Mechanics of NAS of Azerbaijan, AZ1141, Baku, Azerbaijan
Ismail Ekincioglu, Vagif S. Guliyev
  • Department of Mathematics, Dumlupinar University, 43100, Kutahya, Turkey
  • Institute of Mathematics and Mechanics of NAS of Azerbaijan, AZ1141, Baku, Azerbaijan
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Esra Kaya

Abstract

In this paper, we prove the boundedness of the Bn maximal operator and Bn singular integral operators associated with the Laplace-Bessel differential operator ΔBn on variable exponent Lebesgue spaces.

  • [1]

    Adamowicz, T.—Harjulehto, P.—Hästö, P.: Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces, Math. Scand. 116 (2015), 5–22.

    • Crossref
    • Export Citation
  • [2]

    Aliev, I. A.—Gadjiev, A. D.: Weighted estimates of multidimensional singular integrals generated by the generalized shift operator, Mat. Sb. 183 (1992), 45–66 (in Russian); Russian Acad. Sci. Sb. Math. 77 (1994), 37–55 (in English).

  • [3]

    Cruz-Uribe, D.—Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser, 2013.

  • [4]

    Cruz-Uribe, D.—Fiorenza, A.—Martell, J.—Pérez, C.: The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 239–264.

  • [5]

    Cruz-Uribe, D.—Fiorenza, A.—Neugebauer, C.: The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238.

  • [6]

    Cruz-Uribe, D.—Martell, J.—Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia. Operator Theory: Advance and Applications 215, Birkhäuser Basel, 2011.

  • [7]

    Diening, L.: Maximal function on Orlicz-Musielak spaces and generalized Lebesgue space, Bull. Sci. Math. 129 (2005), 657–700.

    • Crossref
    • Export Citation
  • [8]

    Diening, L.—Harjulehto, P.—Hästö, P.—Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math. 2017, Springer-Verlag, Berlin, 2011.

  • [9]

    Ekincioglu, I.: The Boundedness of high order Riesz-Bessel transformations generated by the generalized shift operator in weighted L p,ω,γ-spaces with general weights, Acta Appl. Math. 109 (2010), 591–598.

    • Crossref
    • Export Citation
  • [10]

    Gadjiev, A. D.—Guliyev, E. V.: Two-weighted inequality for singular integrals in Lebesgue spaces, associated with the Laplace-Bessel differential operator, Proc. Razmadze Math. Inst. 138 (2005), 1–15.

  • [11]

    Guliev, E. V.: Weighted inequality for singular integrals in Lebesgue spaces, associated with the Laplace-Bessel differential operators, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 25 (2006), 27–34.

  • [12]

    Guliev, V. S.: Sobolev theorems for B-Riesz potentials, Dokl. RAN 358 (1998), 450–451.

  • [13]

    Guliev, V. S.: On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl. 6 (2003), 317–330.

  • [14]

    Ho, K. P.: Atomic decompositions of Hardy spaces and characterization of BMO via Banach function spaces, Anal. Math. 38 (2012), 173–185.

    • Crossref
    • Export Citation
  • [15]

    Ho, K. P.: Singular integral operators, John-Nirenberg inequalities and Tribel-Lizorkin type spaces on weighted Lebesgue spaces with variable exponents, Rev. Un. Mat. Argentina 57 (2016), 85–101.

  • [16]

    Kipriyanov I. A.—Klyuchantsev, M. I.: On singular integrals generated by the generalized shift operator, II, Sibirsk. Mat. Zh. 11 (1970), 1060–1083 (in Russian); Siberian Math. J. 11 (1970), 787–804 (in English).

  • [17]

    Klyuchantsev, M. I.: On singular integrals generated by the generalized shift operator, I, Sibirsk. Math. Zh. 11 (1970), 810–821 (in Russian); Siberian Math. J. 11 (1970), 612–620 (in English).

  • [18]

    Kokilashvili, V. M.—Samko, N.—Samko, S. G.: The maximal operator in weighted variable Lebesgue spaces on metric spaces, Georgian Math. J. 15 (2008), 683–712.

  • [19]

    Kovacik, O.—Rakosnik, J.: On spaces L p(x) and W k,p(x), Czechoslovak Math. J. 41 (1991), 592–618.

  • [20]

    Levitan, B. M.: Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk 6 42 (1951), 102–143.

  • [21]

    Lyakhov, L. N.: On a class of spherical functions and singular pseudodifferential operators, Dokl. Akad. Nauk. 272 (1983), 781–784 (in Russian); Soviet Math.Dokl. 28 (1983), 431–434 (in English).

  • [22]

    Lyakhov, L. N.: Multipliers of the mixed Fourier-Bessel transformation, Proc. V. A. Steklov Inst. Math. 214 (1997), 234–249.

  • [23]

    Samko, S. G.: Differentiation and integration of variable order and the spaces L p(x). In: Proceed. of Intern. Conference Operator Theory and Complex and Hypercomplex Analysis, 1217 December 1994, Mexico City, Mexico, Contemp. Math. 212 (1998), 203–219.

  • [24]

    Sharapudinov, I. I.: The topology of the space 𝓛p(t)([0, 1]), Mat. Zametki 26 (1979), 613–632.

  • [25]

    Stempak, K.: Almost everywhere summability of Laguerre series, Studia Math. 100 (1991), 129–147.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process.

Search