Patterning of Quantum Dots by Dip-Pen and Polymer Pen Nanolithography

Soma Biswas 1 , 2 , Falko Brinkmann 1 , Michael Hirtz 1 , and Harald Fuchs 1
  • 1 Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
  • 2 Laboratory for Bio- and Nano- Instrumentation (LBNI), Ecole Polytechnique Federale De Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Abstract

We present a direct way of patterning CdSe/ ZnS quantum dots by dip-pen nanolithography and polymer pen lithography. Mixtures of cholesterol and phospholipid 1,2-dioleoyl-sn-glycero-3 phosphocholine serve as biocompatible carrier inks to facilitate the transfer of quantum dots from the tips to the surface during lithography. While dip-pen nanolithography of quantum dots can be used to achieve higher resolution and smaller pattern features (approximately 1 μm), polymer pen lithography is able to address intermediate pattern scales in the low micrometre range. This allows us to combine the advantages of micro contact printing in large area and massive parallel patterning, with the added flexibility in pattern design inherent in the DPN technique.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Singh M., Haverinen H.M., Dhagat P., Jabbour G.E., Inkjet Printing - Process and Its Applications, Adv. Mater., 2010, 22, 673–685.

  • [2] Kumar A., Whitesides G.M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching, Appl. Phys. Lett., 1993, 63, 2002-2004.

  • [3] Piner R.D., Zhu J., Xu F., Hong S.H., Mirkin C.A., “Dip-Pen” Nanolithography, Science, 1999, 283, 661–663.

  • [4] Huo F., Zheng Z., Zheng G., Giam L.R., Zhang H., Mirkin C.A., Polymer Pen Lithography, Science, 2008, 321, 1658–1660.

  • [5] Barbulovic-Nad I., Lucente M., Sun Y., Zhang M., Wheeler A.R., Bussmann M., Bio-Microarray Fabrication Techniques - A Review, Crit. Rev. Biotechnol. 2006, 26, 237–259.

  • [6] Tan C.P., Cipriany B.R., Lin D.M., Craighead H.G., Nanoscale Resolution, Multicomponent Biomolecular Arrays Generated By Aligned Printing With Parylene Peel-Off, Nano Lett., 2010, 10, 719–725.

  • [7] Haab B.B, Methods and applications of antibody microarrays in cancer research, Proteomics, 2003, 3, 2116–2122.

  • [8] Nafday O.A., Lowry T.W., Lenhert S., Multifunctional Lipid Multilayer Stamping, Small, 2012, 8, 1021–1028.

  • [9] Ginger D.S., Zhang H., Mirkin C.A., The Evolution of Dip-Pen Nanolithography, Angew. Chemie, 2004, 43, 30–45.

  • [10] Brown K.A., Eichelsdoerfer D.J., Liao X., He S., Mirkin C.A., Material transport in dip-pen nanolithography, Front. Phys., 2014, 9, 385-397.

  • [11] Lenhert S., Sun P., Wang Y., Fuchs H., Mirkin C.A., Massively Parallel Dip-Pen Nanolithography of Heterogeneous Supported Phospholipid Multilayer Patterns, Small, 2007, 3, 71–75.

  • [12] Brinkmann F., Hirtz M., Greiner A.M., Weschenfelder M., Waterkotte B., Bastmeyer M., Fuchs H., Interdigitated Multicolored Bioink Micropatterns by Multiplexed Polymer Pen Lithography, Small, 2013, 9, 3266–3275.

  • [13] Zheng Z., Daniel W.L., Giam L.R., Huo F., Senesi A.J., Zheng G., Mirkin C.A., Multiplexed Protein Arrays Enabled by Polymer Pen Lithography: Addressing the Inking Challenge, Angew. Chemie 2009, 48, 7626–7629.

  • [14] Biswas S., Hirtz M., Fuchs H., Measurement of Mass Transfer during Dip-Pen Nanolithography with Phospholipids, Small, 2011, 7, 2081–2086.

  • [15] Bian S., He J., Schesing K.B., Braunschweig A.B., Polymer Pen Lithography (PPL)-Induced Site-Specific Click Chemistry for the Formation of Functional Glycan Arrays, Small, 2012, 8, 2000–2005.

  • [16] Chen H.-Y., Hirtz M., Deng X., Laue T., Fuchs H., Lahann J., Substrate Independent Dip-Pen Nanolithography Based on Reactive Coatings. J. Am. Chem. Soc., 2010, 132, 18023–18025.

  • [17] Long D. A., Unal K., Pratt R. C., Malkoch M., Frommer J., Localized “Click” Chemistry Through Dip-Pen Nanolithography. Adv. Mater., 2007, 19, 4471–4473.

  • [18] Oberhansl S., Hirtz M., Lagunas A., Eritja R., Martinez E., Fuchs H., Samitier J., Facile Modification of Silica Substrates Provides a Platform for Direct-Writing Surface Click Chemistry, Small, 2012, 8, 541–545.

  • [19] Paxton W. F., Spruell J. M., Stoddart J. F., Heterogeneous Catalysis of a Copper-Coated Atomic Force Microscopy Tip for Direct-Write Click Chemistry, J. Am. Chem. Soc. 2009, 131, 6692–6694.

  • [20] Zhou X., He S., Brown K. A., Mendez-Arroyo J., Boey F., Mirkin C. A., Locally Altering the Electronic Properties of Graphene by Nanoscopically Doping It with Rhodamine 6G, Nano Lett. 2013, 13, 1616–1621.

  • [21] Lenhert S., Brinkmann F., Laue T., Walheim S., Vannahme C., Klinkhammer S., et al., Lipid multilayer gratings, Nat. Nanotechnol., 2010, 5, 275–279.

  • [22] Sekula S., Fuchs J., Weg-Remers S., Nagel P., Schuppler S., Fragala J., et al., Multiplexed Lipid Dip-Pen Nanolithography on Subcellular Scales for the Templating of Functional Proteins and Cell Culture, Small, 2008, 4, 1785-1793.

  • [23] Wang W.M., Stoltenberg R.M., Liu S., Bao Z., Direct Patterning of Gold Nanoparticles Using Dip-Pen Nanolithography, ACS Nano, 2008, 2, 2135-2142.

  • [24] Hirtz M., Oikonomou A., Georgiou T., Fuchs H., Vijayaraghavan A., Multiplexed Biomimetic Lipid Membranes on Graphene by Dip-Pen Nanolithography, Nat. Commun., 2013, 4, 2591.

  • [25] Hirtz M., Corso R., Sekula-Neuner S., Fuchs H., Comparative Height Measurements of Dip-Pen Nanolithography-Produced Lipid Membrane Stacks with Atomic Force, Fluorescence, and Surface Enhanced Ellipsometric Contrast Microscopy, Langmuir, 2011, 27, 11605-11608.

  • [26] Bellido E., de Miguel R., Sesé J., Ruiz-Molina D., Lostao A., Maspoch D., Nanoscale Positioning of Inorganic Nanoparticles Using Biological Ferritin Arrays Fabricated by Dip-Pen Nanolithography, Scanning, 2010, 32, 35-41.

  • [27] Kim J., Shin Y., Yun S., Choi D., Nam J., Kim S. R., et al., Direct-Write Patterning of Bacterial Cells by Dip-Pen Nanolithography, J. Am. Chem. Soc., 2012, 134, 16500–16503.

  • [28] Huang L., Braunschweig A.B., Shim W., Qin L., Lim J.K., Hurst H.J., et al., Matrix-Assisted Dip-Pen Nanolithography and Polymer Pen Lithography, Small, 2010, 6, 1077–1081.

  • [29] Senesi A. J., Rozkiewicz D.I., Reinhoudt D.N., Mirkin C.A., Agarose-Assisted Dip-Pen Nanolithography of Oligonucleotides and Proteins, ACS Nano, 2009, 3, 2394–2402.

  • [30] Yoffe A.D., Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys., 2001, 50, 1–208.

  • [31] Bera D., Qian L., Tseng T.-K., Holloway P.H., Quantum Dots and Their Multimodal Applications: A Review, Materials, 2010, 3, 2260–2345.

  • [32] Pattani V.P., Li C., Desai T.A., Vu T.Q., Microcontact printing of quantum dot bioconjugate arrays for localized capture and detection of biomolecules, Biomed. Microdevices, 2008, 10, 367–374.

  • [33] Ryman-Rasmussen J.P., Riviere J.E., Monteiro-Riviere N.A., Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes, J. Invest. Dermatol., 2007, 127, 143–153.

  • [34] Rizzo A., Mazzeo M., Palumbo M., Lerario G., D’Amone S., Cingolani R., Gigli G., Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers, Adv. Mater., 2008, 20, 1886–1891.

  • [35] Anikeeva P.O., Madigan C.F., Halpert J.E., Bawendi M.G., Bulović V., Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots, Phys. Rev. B, 2008, 78, 085434-1-085434-8.

  • [36] Haverinen H.M., Myllylä R.A., Jabbour G.E., Inkjet printing of light emitting quantum dots, Appl. Phys. Lett., 2009, 94, 073108-1-073108-3.

  • [37] Collins J. M., Lam R. T. S., Yang Z., Semsarieh B., Smetana A. B., Nettikadan S., Targeted Delivery to Single Cells in Precisely Controlled Microenvironments, Lab Chip, 2012, 12, 2643–2648.

  • [38] Panzer M. J., Aidala K. E., Bulovic V., Contact printing of colloidal nanocrystal thin films for hybrid organic/quantum dot optoelectronic devices, Nano Rev., 2012, 3, 16144.

  • [39] Anikeeva P. O., Halpert J. E., Bawendi M. G., Bulovic V., Quantum dot light emitting devices with electroluminescence tunable over the entire visible spectrum, Nano Lett., 2009, 9, 2532–2536.

  • [40] Kim T.H., Cho K.S., Lee E.K., Lee S.J., Chae J., Kim J.W., et al., Full-colour quantum dot displays fabricated by transfer printing, Nat. Photonics, 201 1, 5, 176-182.

  • [41] Bog U., Laue T., Grossmann T., Beck T., Wienhold T., Richter B., et al., On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink, Lab Chip, 2013, 13, 2701-2707.

  • [42] Bog U., Brinkmann F., Kalt H., Koos C., Mappes T., Hirtz M., et al., Large-Scale Parallel Surface Functionalization of Goblet-Type Whispering Gallery Mode Microcavity Arrays for Biosensing Applications, Small, 2014, 10, 3863-3868.

  • [43] Sekula-Neuner S., Maier J., Oppong E., Cato A.C.B., Hirtz M., Fuchs H., Allergen Arrays for Antibody Screening and Immune Cell Activation Profiling Generated by Parallel Lipid Dip-Pen Nanolithography, Small, 2012, 8, 585-591.

  • [44] Oppong E., Hedde P.N., Sekula-Neuner S., Yang L., Brinkmann F., Dörlich R. et al., Localization and Dynamics of Glucocorticoid Receptor at the Plasma Membrane of Activated Mast Cells, Small, 2014, 10, 1991-1998.

  • [45] Haaheim J., Val V., Bussan J., Rozhok S., Jang J.-W., Fragala J., Nelson M., Self-leveling two-dimensional probe arrays for Dip Pen Nanolithography, Scanning, 2010, 32, 49–59.

OPEN ACCESS

Journal + Issues

Search