Lipid nanotube networks: Biomimetic Cell-to-Cell Communication and Soft-Matter Technology

Irep Gözen 1  and Aldo Jesorka 2
  • 1 Biophysical Technology Laboratory, Department of Chemistry; Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
  • 2 School of Engineering and Applied Sciences, Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Abounit S., Zurzolo C., Wiring through tunneling nanotubes - from electrical signals to organelle transfer, J. Cell Sci., 2012 , 125, 1089-1098.

  • [2] Kumar N.M., Gilula N.B., The gap junction communication channel, Cell, 1996, 84, 381-388.

  • [3] Fevrier B., Raposo G., Exosomes: endosomal-derived vesicles shipping extracellular messages, Curr. Opin. Cell Biol., 2004, 16, 415-421.

  • [4] Kimura S., Hase K., Ohno H., The molecular basis of induction and formation of tunneling nanotubes, Cell Tissue Res., 2013, 352, 67-76.

  • [5] Davis D.M., Sowinski S., Membrane nanotubes: dynamic long-distance connections between animal cells, Nat. Rev. Mol. Cell Biol., 2008, 9, 431-436.

  • [6] Marzo L., Gousset K., Zurzolo C., Multifaceted roles of tunneling nanotubes in intercellular communication, Front. Physiol., 2012, 3, 72.

  • [7] Hurtig J., Chiu D.T., Onfelt B., Intercellular nanotubes: insights from imaging studies and beyond, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2, 260-276.

  • [8] Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H.H., Nanotubular highways for intercellular organelle transport, Science, 2004, 303, 1007-1010.

  • [9] Pascoal P., Kosanic D., Gjoni M., Vogel H., Membrane nanotubes drawn by optical tweezers transmit electrical signals between mammalian cells over long distances, Lab Chip, 2010, 10, 2235-2241.

  • [10] Lachambre S., Chopard C., Beaumelle B., Preliminary characterisation of nanotubes connecting T-cells and their use by HIV-1, Biol. Cell, 2014, 106, 394-404.

  • [11] Takahashi A., Kukita A., Li Y.J., Zhang J.Q., Nomiyama H., Yamaza T., et al., Tunneling nanotube formation is essential for the regulation of osteoclastogenesis, J. Cell. Biochem., 2013, 114, 1238-1247.

  • [12] Thayanithy V., Babatunde V., Dickson E.L., Wong P., Oh S., Ke X., et al., Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells, Exp. Cell Res., 2014, 323, 178-188.

  • [13] Pasquier J., Guerrouahen B.S., Al Thawadi H., Ghiabi P., Maleki M., Abu-Kaoud N., et al., Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, J. Transl. Med., 2013, 11, 94.

  • [14] Costanzo M., Abounit S., Marzo L., Danckaert A., Chamoun Z., Roux P., et al., Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, J. Cell Sci., 2013, 126, 3678-3685.

  • [15] Rupp I., Sologub L., Williamson K.C., Scheuermayer M., Reininger L., Doerig C., et al., Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut, Cell Res., 2011, 21, 683-696.

  • [16] Agnati L., Guidolin D., Maura G., Marcoli M., Leo G., Carone C., et al., Information handling by the brain: proposal of a new “paradigm” involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission, J. Neural Transm., 2014, 121, 1431-1449.

  • [17] Agnati L.F., Fuxe K., Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks, Phil. Trans. R. Soc. B, 2014, 369, 20130505.

  • [18] Gozen I., Jesorka A., Instrumental Methods to Characterize Molecular Phospholipid Films on Solid Supports, Anal. Chem., 2012, 84, 822-838.

  • [19] Karlsson M., Davidson M., Karlsson R., Karlsson A., Bergenholtz J., Konkoli Z., et al., Biomimetic nanoscale reactors and networks, Annu. Rev. Phys. Chem., 2004, 55, 613-649.

  • [20] Jesorka A., Stepanyants N., Zhang H.J., Ortmen B., Hakonen B., Orwar O., Generation of phospholipid vesicle-nanotube networks and transport of molecules therein, Nat. Protoc., 2011, 6, 791-805.

  • [21] Lizana L., Bauer B., Orwar O., Controlling the rates of biochemical reactions and signaling networks by shape and volume changes, Proc. Natl. Acad. Sci. USA, 2008, 105, 4099-4104.

  • [22] Gozen I., Billerit C., Dommersnes P., Jesorka A., Orwar O., Calcium Ion Controlled Nanoparticle Induced Tubulation in Supported Flat Phospholipid Vesicles, Biophys. J., 2012, 102, 94a.

  • [23] Castillo J.A., Narciso D.M., Hayes M.A., Bionanotubule Formation from Surface-Attached Liposomes Using Electric Fields, Langmuir, 2009, 25, 391-396.

  • [24] Frusawa H., Manabe T., Kagiyama E., Hirano K., Kameta N., Masuda M., et al., Electric moulding of dispersed lipid nanotubes into a nanofluidic device, Sci. Rep., 2013, 3, 2165.

  • [25] Sugihara K., Chami M., Derenyi I., Voros J., Zambelli T., Directed Self-Assembly of Lipid Nanotubes from Inverted Hexagonal Structures, ACS Nano, 2012, 6, 6626-6632.

  • [26] Karlsson M., Sott K., Cans A.S., Karlsson A., Karlsson R., Orwar O., Micropipet-assisted formation of microscopic networks of unilamellar lipid bilayer nanotubes and containers, Langmuir, 2001, 17, 6754-6758.

  • [27] Zhang H., Xu S., Jeffries G.D.M., Orwar O., Jesorka A., Artificial nanotube connections and transport of molecular cargo between mammalian cells, Nano Commun. Netw., 2013, 4, 197-204.

  • [28] Davidson M., Karlsson M., Sinclair J., Sott K., Orwar O., Nanotube-vesicle networks with functionalized membranes and interiors, J. Am. Chem. Soc., 2003, 125, 374-378.

  • [29] Bauer B., Davidson M., Orwar O., Direct reconstitution of plasma membrane lipids and proteins in nanotube-vesicle networks, Langmuir, 2006, 22, 9329-9332.

  • [30] Kameta N., Minamikawa H., Masuda M., Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space, Soft Matter, 2011, 7, 4539-4561.

  • [31] Sugihara K., Rustom A., Spatz J.P., Freely drawn single lipid nanotube patterns, Soft Matter, 2015, 11, 2029-2035.

  • [32] Wegrzyn I., Jeffries G.D.M., Nagel B., Katterle M., Gerrard S.R., Brown T., et al., Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles, J. Am. Chem. Soc., 2011, 133, 18046-18049.

  • [33] Markstrom M., Lizana L., Orwar O., Jesorka A., Thermoactuated diffusion control in soft matter nanofluidic devices, Langmuir, 2008, 24, 5166-5171.

  • [34] Czolkos I., Guan J., Orwar O., Jesorka A., Flow control of thermotropic lipid monolayers, Soft Matter, 2011, 7, 6926-6933.

  • [35] Gozen I., Shaali M., Ainla A., Ortmen B., Poldsalu I, Kustanovich K., et al., Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks, Lab Chip, 2013, 13, 3822-3826.

OPEN ACCESS

Journal + Issues

Search