Ink transport modelling in Dip-Pen Nanolithography and Polymer Pen Lithography

Abstract

Dip-pen nanolithography (DPN) and Polymer pen lithography (PPL) are powerful lithography techniques being able to pattern a wide range of inks. Transport and surface spreading depend on the ink physicochemical properties, defining its diffusive and fluid character. Structure assembly on surface arises from a balance between the entanglement of the ink itself and the interaction with the substrate. According to the transport characteristics, different models have been proposed. In this article we review the common types of inks employed for patterning, the particular physicochemical characteristics that make them flow following different dynamics as well as the corresponding transport mechanisms and models that describe them.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Binnig G., Quate C. F., Atomic Force Microscope, Phys. Rev. Lett., 1986, 56, 930–933.

  • [2] Jaschke M., Butt H.-J., Deposition of Organic Material by the Tip of a Scanning Force Microscope, Langmuir, 1995, 11, 1061–1064.

  • [3] Piner R. D., Zhu J., Xu F., Hong S., Mirkin C. A., ‘Dip-Pen’ Nanolithography, Science, 1999, 283, 661–663.

  • [4] Brown K., Eichelsdoerfer D., Liao X., He S., Mirkin C., Material transport in dip-pen nanolithography, Front. Phys., 2013, 9, 385–397.

  • [5] Urtizberea A., Hirtz M., A diffusive ink transport model for lipid dip-pen nanolithography, Nanoscale, 2015, 7, 15618–15634.

  • [6] Wang Y., Giam L. R., Park M., Lenhert S., Fuchs H., Mirkin C. A., A Self-Correcting Inking Strategy for Cantilever Arrays Addressed by an Inkjet Printer and Used for Dip-Pen Nanolithography, Small, 2008, 4, 1666–1670.

  • [7] Jang J. W., Smetana A., Stiles P., Multi-ink pattern generation by dip-pen nanolithography, Scanning, 2010, 32, 24–29.

  • [8] Weeks B. L., Noy A., Miller A. E., De Yoreo J. J., Effect of dissolution kinetics on feature size in dip-pen nanolithography., Phys. Rev. Lett., 2002, 88, 255505.

  • [9] Sheehan P. E., Whitman L. J., Thiol diffusion and the role of humidity in ‘Dip Pen Nanolithography’., Phys. Rev. Lett., 2002, 88, 156104.

  • [10] Jang J., Schatz G. C., Ratner M. A., Liquid meniscus condensation in dip-pen nanolithography, J. Chem. Phys., 2002, 116, 3875–3886.

  • [11] Cho N., Ryu S., Kim B., Schatz G. C., Hong S., Phase of molecular ink in nanoscale direct deposition processes, J. Chem. Phys., 2006, 124, 024714.

  • [12] Rozhok S., Piner R., Mirkin C. A., Dip-Pen Nanolithography: What Controls Ink Transport?, J. Phys. Chem. B, 2003, 107, 751–757.

  • [13] Chung S., Felts J. R., Wang D., King W. P., De Yoreo J. J., Temperature-dependence of ink transport during thermal dip-pen nanolithography, Appl. Phys. Lett., 2011, 99, 129–132.

  • [14] Sanedrin R. G., Amro N. A., Rendlen J., Nelson M., Temperature controlled dip-pen nanolithography, Nanotechnology, 2010, 21, 115302.

  • [15] Sheehan P. E., Whitman L. J., King W. P., Nelson B. A., Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett., 2004, 85, 1589–1591.

  • [16] Jang J., Hong S., Schatz G. C., Ratner M. A., Self-assembly of ink molecules in dip-pen nanolithography: A diffusion model, J. Chem. Phys., 2001, 115, 2721.

  • [17] Eichelsdoerfer D. J., Brown K. A., Mirkin C. A., Capillary bridge rupture in dip-pen nanolithography, Soft Matter, 2014, 10, 5603–5608.

  • [18] Hirtz M., Corso R., Sekula-Neuner S., Fuchs H., Comparative height measurements of dip-pen nanolithography-produced lipid membrane stacks with atomic force, fluorescence, and surface-enhanced ellipsometric contrast microscopy, Langmuir, 2011, 27, 11605–11608.

  • [19] Huo F., Zheng Z., Zheng G., Giam L. R., Zhang H., Mirkin C. A., Polymer Pen Lithography, Science, 2008, 321, 1658–1660.

  • [20] Hong J. M., Ozkeskin F. M., Zou J., A micromachined elastomeric tip array for contact printing with variable dot size and density, J. Micromechanics Microengineering, 2008, 18, 015003.

  • [21] Liao X., Braunschweig A. B., Zheng Z., Mirkin C. A., Force- and time-dependent feature size and shape control in molecular printing via polymer-pen lithography., Small, 2010, 6, 1082–1086.

  • [22] Brinkmann F., Hirtz M., Greiner A. M., Weschenfelder M., Waterkotte B., Bastmeyer M., Fuchs H., Interdigitated Multicolored Bioink Micropatterns by Multiplexed Polymer Pen Lithography, Small, 2013, 9, 3266–3275.

  • [23] Saha S. K., Culpepper M. L., An Ink Transport Model for Prediction of Feature Size in Dip Pen Nanolithography, J. Phys. Chem. C, 2010, 114, 15364–15369.

  • [24] Saha S. K. , Culpepper M. L., A surface diffusion model for Dip Pen Nanolithography line writing, Appl. Phys. Lett., 2010, 96, 243105.

  • [25] Nocedal I., Espinosa H., Kim K.-H., Ink Diffusion in Dip-Pen Nanolithography: A Study in the Development of Nano Fountain Probes, 2005, 2, 105.

  • [26] Giam L. R., Wang Y., Mirkin C. A., Nanoscale molecular transport: The case of dip-pen nanolithography, J. Phys. Chem. A, 2009, 113, 3779–3782.

  • [27] Piner R. D., Mirkin C. A., Effect of Water on Lateral Force Microscopy in Air, Langmuir, 1997, 13, 6864–6868.

  • [28] Schenk M., Fu M., Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy, J. Appl. Phys., 1998, 84, 4880–4884.

  • [29] Weeks B. L., Vaughn M. W., Deyoreo J. J., Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir, 2005, 21, 8096–8098.

  • [30] Stifter T., Marti O., Bhushan B., Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy, Phys. Rev. B, 2000, 62, 13667–13673.

  • [31] Kim H., Smit B., Jang J., Monte carlo study on the water meniscus condensation and capillary force in atomic force microscopy, J. Phys. Chem. C, 2012, 116, 21923–21931.

  • [32] Xiao X., Qian L., Investigation of humidity-dependent capillary force, Langmuir, 2000, 16, 8153–8158.

  • [33] Sirghi L., Szoszkiewicz R., Riedo E., Volume of a nanoscale water bridge, Langmuir, 2006, 22, 1093–1098.

  • [34] Sedin D. L., Rowlen K. L., Adhesion forces measured by atomic force microscopy in humid air, Anal. Chem., 2000, 72, 2183–2189.

  • [35] He M., Szuchmacher Blum A., Aston D. E., Buenviaje C., Overney R. M., Luginbühl R., Critical phenomena of water bridges in nanoasperity contacts, J. Chem. Phys., 2001, 114, 1355–1360.

  • [36] Colak A., Wormeester H., Zandvliet H. J. W., Poelsema B., Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip, Appl. Surf. Sci., 2012, 258, 6938–6942.

  • [37] Peterson E. J., Weeks B. L., De Yoreo J. J. , Schwartz P. V., Effect of environmental conditions on dip pen nanolithography of mercaptohexadecanoic acid, J. Phys. Chem. B, 2004, 108, 15206–15210.

  • [38] Schwartz P. V., Molecular transport from an atomic force microscope tip: A comparative study of dip-pen nanolithography, Langmuir, 2002, 18, 4041–4046.

  • [39] Weeks B. L., DeYoreo J. J., Dynamic meniscus growth at a scanning probe tip in contact with a gold substrate, J. Phys. Chem. B, 2006, 110, 10231–10233.

  • [40] Nafday O. A., Vaughn M. W., Weeks B. L., Evidence of meniscus interface transport in dip-pen nanolithography: An annular diffusion model, J. Chem. Phys., 2006, 125, 144703.

  • [41] Antoncik E., Dip-pen nanolithography: A simple diffusion model, Surf. Sci., 2005, 599, L369–L371.

  • [42] Haaheim J., Eby R., Nelson M., Fragala J., Rosner B., Zhang H., Athas G., Dip Pen Nanolithography (DPN): Process and instrument performance with NanoInk’s NSCRIPTOR system, Ultramicroscopy, 2005, 103, 117–132.

  • [43] Xu S., Liu G., Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir, 1997, 13, 127–129.

  • [44] Barczewski M., Walheim S., Heiler T., Blaszczyk A., Mayor M., Schimmel T., High aspect ratio constructive nanolithography with a photo-dimerizable molecule., Langmuir, 2010, 26, 3623–3628.

  • [45] Chen C., Zhou X., Xie Z., Gao T., Zheng Z., Construction of 3D Polymer Brushes by Dip-Pen Nanodisplacement Lithography: Understanding the Molecular Displacement for Ultrafine and High-Speed Patterning, Small, 2015, 11, 613–621.

  • [46] Lee N. K., Hong S., Modeling collective behavior of molecules in nanoscale direct deposition processes, J. Chem. Phys., 2006, 124, 114711.

  • [47] Heo D. M., Yang M., Kim H., Saha L. C., Jang J., Tip Dependence of the Self-Assembly in Dip-Pen Nanolithography, J. Phys. Chem. C, 2009, 113, 13813–13818.

  • [48] Manandhar P., Jang J., Schatz G. C., Ratner M. A., Hong S., Anomalous surface diffusion in nanoscale direct deposition processes, Phys. Rev. Lett., 2003, 90, 115505.

  • [49] O’Connell C. D., Higgins M. J., Marusic D., Moulton S. E., Wallace G. G., Liquid ink deposition from an atomic force microscope tip: deposition monitoring and control of feature size, Langmuir, 2014, 30, 2712–2721.

  • [50] Felts J. R., Somnath S., Ewoldt R. H., King W. P., Nanometerscale flow of molten polyethylene from a heated atomic force microscope tip, Nanotechnology, 2012, 23, 215301.

  • [51] O’Connell C. D., Higgins M. J., Sullivan R. P., Moulton S. E., Wallace G. G., Ink-on-Probe Hydrodynamics in Atomic Force Microscope Deposition of Liquid Inks, Small, 2014, 10, 3717–3728.

  • [52] Liu G., Zhou Y., Banga R. S., Boya R., Brown K. A., Chipre A. J., Nguyen S. T., Mirkin C. A., The role of viscosity on polymer ink transport in dip-pen nanolithography., Chem. Sci., 2013, 4, 2093–2099.

  • [53] Binder H., The molecular architecture of lipid membranes - New insights from hydration-tuning infrared linear dichroism spectroscopy, Appl. Spectrosc. Rev., 2003, 38, 15–69.

  • [54] Hristova K., White S. H., Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration, Biophys. J., 1998, 74, 2419–2433.

  • [55] Wiener M. C., White S. H., Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups, Biophys. J., 1992, 61, 428–433.

  • [56] Filippov A., Orädd G., Lindblom G., Influence of cholesterol and water content on phospholipid lateral diffusion in bilayers, Langmuir, 2003, 19, 6397–6400.

  • [57] Lenhert S., Sun P., Wang Y., Fuchs H., Mirkin C. A., Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns, Small, 2007, 3, 71–75.

  • [58] Lenhert S., Brinkmann F., Laue T., Walheim S., Vannahme C., Klinkhammer S., Xu M., et al., Lipid multilayer gratings, Nat. Nanotechnol., 2010, 5, 275–279.

  • [59] Hirtz M., Oikonomou A., Georgiou T., Fuchs H., Vijayaraghavan A., Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography, Nat. Commun., 2013, 4, 2591.

  • [60] Biswas S., Hirtz M., Fuchs H., Measurement of Mass Transfer during Dip‐Pen Nanolithography with Phospholipids, Small, 2011, 7, 2081–2086.

  • [61] Förste A., Pfirrmann M., Sachs J., Gröger R., Walheim S., Brinkmann F., Hirtz M., Fuchs H., Schimmel T., Lipid droplets imaged by ultra large scale AFM: Prediction of the transferred ink volume in lipid-dip pen nanolithography, Nanotechnology, 2015, 26, 175303.

  • [62] Lenhert S., Mirkin C. A., Fuchs H., In situ lipid dip-pen nanolithography under water, Scanning, 2010, 32, 15–23.

  • [63] Mohamad S., Noël O., Buraud J. L., Brotons G., Fedala Y., Ausserré D., Mechanism of lipid nanodrop spreading in a case of asymmetric wetting, Phys. Rev. Lett., 2012, 109, 248108.

  • [64] Rädler J., Strey H., Sackmann E., Phenomenology and Kinetics of Lipid Bilayer Spreading on Hydrophilic Surfaces, Langmuir, 1995, 11, 4539–4548.

  • [65] Nissen J., Gritsch S., Wiegand G., Rädler J. O., Wetting of phospholipid membranes on hydrophilic surfaces - Concepts towards self-healing membranes, Eur. Phys. J. B, 1999, 10, 335–344.

  • [66] Sanii B., Parikh A. N., Surface-energy dependent spreading of lipid monolayers and bilayers, Soft Matter, 2007, 3, 974–977.

  • [67] Eichelsdoerfer D. J., Brown K. A., Wang M. X., Mirkin C. A., Role of Absorbed Solvent in Polymer Pen Lithography, J. Phys. Chem. B, 2013, 117, 16363–16368.

  • [68] Xie Z., Shen Y., Zhou X., Yang Y., Tang Q., Miao Q., Su J., Wu H., Zheng Z., Polymer pen lithography using dual-elastomer tip arrays, Small, 2012, 8, 2664–2669.

  • [69] Liao X., Braunschweig A. B., Mirkin C. A., ‘Force-feedback’ leveling of massively parallel arrays in polymer pen lithography, Nano Lett., 2010, 10, 1335–1340.

  • [70] Zheng Z., Daniel W. L., Giam L. R., Huo F., Senesi A. J., Zheng G., Mirkin C. A., Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge, Angew. Chemie Int. Ed., 2009, 48, 7626–7629.

  • [71] Zhong X., Bailey N. A., Schesing K. B., Bian S., Campos L. M., Braunschweig A. B., Materials for the preparation of polymer pen lithography tip arrays and a comparison of their printing properties, J. Polym. Sci. Part A Polym. Chem., 2013, 51, 1533–1539.

  • [72] Bian S., He J., Schesing K. B., Braunschweig A. B., Polymer Pen Lithography (PPL)-Induced Site-Specific Click Chemistry for the Formation of Functional Glycan Arrays, Small, 2012, 8, 2000–2005.

  • [73] Xie Z., Zhou Y., Hedrick J. L., Chen P.-C., He S., Shahjamali M. M., Wang S., Zheng Z., Mirkin C. A., On-Tip Photo-Modulated Molecular Printing, Angew. Chem. Int. Ed. Engl., 2015, 54, 12894–12899.

OPEN ACCESS

Journal + Issues

Search