Nano-proximity direct ion beam writing

Gediminas Seniutinas 1 , Gediminas Gervinskas 1 , Jose Anguita 2 , Davit Hakobyan 1 , 3 , Etienne Brasselet 3 , and Saulius Juodkazis 1
  • 1 Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, & Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, VIC 3168, Australia
  • 2 The Institute of Microelectronics Madrid, Isaac Newton, 8 PTM, 28760, Spain,
  • 3 University of Bordeaux, CNRS, Laboratoire Ondes et Matière d’Aquitaine, 351 cours de la libération, 33400 Talence, France

Abstract

Focused ion beam (FIB) milling with a 10 nm resolution is used to directly write metallic metasurfaces and micro-optical elements capable to create structured light fields. Surface density of fabricated nano-features, their edge steepness as well as ion implantation extension around the cut line depend on the ion beam intensity profile. The FIB beam intensity cross section was evaluated using atomic force microscopy (AFM) scans of milled line arrays on a thin Pt film. Approximation of two Gaussian intensity distributions describes the actual beam profile composed of central high intensity part and peripheral wings. FIB fabrication reaching aspect ratio of 10 in gold film is demonstrated.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis. Thz photomixer with milled nanoelectrodes on LT-GaAs. Applied Physics A, 117(2):439–444, 2014.

  • [2] R. Levi-Setti. Proton scanning microscopy: feasibility and promise. Scanning Electron Microscopy, 125, 1974.

  • [3] W. H. Escovitz, T. R. Fox, and R. Levi-Setti. Scanning transmission ion microscope with a field ion source. Proceedings of the National Academy of Sciences, 72(5):1826–1828, 1975.

  • [4] G. Seniutinas, G. Gervinskas, A. Balcytis, F. Clark, Y. Nishijima, A. Krotkus, G. Molis, G. Valušis, and S. Juodkazis. Nanoscale precision in ion milling for optical and terahertz antennas. In SPIE OPTO, pages 93740P–93740P. International Society for Optics and Photonics, 2015.

  • [5] C. Marrian and D. M. Tennant. Nanofabrication. Journal of Vacuum Science & Technology A, 21(5):S207–S215, 2003.

  • [6] S. Juodkazis, L. Rosa, S. Bauerdick, L. Peto, R. El-Ganainy, and S. John. Sculpturing of photonic crystals by ion beam lithography: towards complete photonic bandgap at visible wavelengths. Optics Express, 19(7):5802–5810, 2011.

  • [7] J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko. Ion-beam sculpting at nanometre length scales. Nature, 412(6843):166–169, 2001.

  • [8] J.Li, M. Gershow, D. Stein, E. Brandin, and J. A. Golovchenko. DNA molecules and configurations in a solid-state nanopore microscope. Nature Materials, 2(9):611–615, 2003.

  • [9] A. Kotnala and R. Gordon. Double nanohole optical tweezers visualize protein P53 suppressing unzipping of single DNA-hairpins. Biomedical Optics Express, 5(6):1886, 2014.

  • [10] S. Bauerdick, L. Bruchhaus, P. Mazarov, A. Nadzeyka, R. Jede, J. Fridmann, J. E. Sanabia, B. Gila, and B. R Appleton. Multispecies focused ion beam lithography system and its applications. Journal of Vacuum Science & Technology B, 31(6):06F404, 2013.

  • [11] C. Chang and A. Sakdinawat. Ultra-high aspect ratio high-resolution nanofabrication for hard x-ray diffractive optics. Nature Communications, 5, 4243, 2014.

  • [12] S. Tongay, M. Lemaitre, J. Fridmann, A. F. Hebard, B. P. Gila, and B.R. Appleton. Drawing graphene nanoribbons on sic by ion implantation. Applied Physics Letters, 100(7):073501, 2012.

  • [13] E. J. R. Vesseur, R. De Waele, H. J. Lezec, H. A. Atwater, F.J. Garcia De Abajo, and A. Polman. Surface plasmon polariton modes in a single-crystal au nanoresonator fabricated using focused-ion-beam milling. Applied Physics Letters, 92(8):083110, 2008.

  • [14] G. Gervinskas, G. Seniutinas, L. Rosa, and S. Juodkazis. Arrays of arbitrarily shaped nanoparticles: Overlay-errorless direct ion write. Advanced Optical Materials, 1(6):456–459, 2013.

  • [15] U. Levy, H. C. Kim, C. H. Tsai, and Y. Fainman. Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation. Optics Letters, 30(16):2089–2091, 2005.

  • [16] J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340(6130):331–334, 2013.

  • [17] O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona. Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps. Nanotechnology, 24(39):395301, 2013.

  • [18] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk. Split-ball resonator as a three-dimensional analogue of planar split-rings. Nature Communications, 5, 3104, 2014.

  • [19] Q. Wei, K. D. Li, J. Lian, and L. Wang. Angular dependence of sputtering yield of amorphous and polycrystalline materials. Journal of Physics D: Applied Physics, 41(17):172002, 2008.

  • [20] S. Tan, R. Livengood, Y. Greenzweig, Y. Drezner, and D. Shima. Probe current distribution characterization technique for focused ion beam. Journal of Vacuum Science & Technology B, 30(6):06F606, 2012.

  • [21] E. Brasselet, G. Gervinskas, G. Seniutinas, and S. Juodkazis. Topological shaping of light by closed-path nanoslits. Physical Review Letters, 111(19):193901, 2013.

  • [22] J. Orloff, J. Z. Li, and M. Sato. Experimental study of a focused ion beam probe size and comparison with theory. Journal of Vacuum Science & Technology B, 9(5):2609–2612, 1991.

  • [23] J. G. Lopes, J. Rocha, L. M. Redondo, and F. C. Alegria. High resolution ion beam profile measurement system. Proceedings of ICALEPCS2011, Grenoble, France, 2012.

  • [24] C. E. Sosolik, A. C. Lavery, E. B. Dahl, and B. H. Cooper. A technique for accurate measurements of ion beam current density using a faraday cup. Review of Scientific Instruments, 71(9):3326–3330, 2000.

  • [25] J.B. Wang and Y.L. Wang. A novel procedure for measuring the absolute current density profile of a focused gallium-ion beam. Applied Physics Letters, 69(18):2764–2766, 1996.

  • [26] C. M. Park, J. A. Bain, T. W. Clinton, P. A. A. Van der Heijden, and T. J. Klemmer. Measurement of Ga implantation profiles in the sidewall and bottom of focused-ion-beam etched structures. Applied Physics Letters, 84(17):3331–3333, 2004.

  • [27] D. Petit, C. C. Faulkner, S. Johnstone, D. Wood, and R. P. Cowburn. Nanometer scale patterning using focused ion beam milling. Review of Scientific Instruments, 76(2):026105, 2005.

  • [28] C. Vieu, G. B. Assayag, and J. Gierak. Observation and simulation of focused ion beam induced damage. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 93(4):439–446, 1994.

  • [29] R. G. Forbes. Understanding how the liquid-metal ion source works. Vacuum, 48 (1):85–97, 1997.

  • [30] J. Anguita, R. Alvaro, and F. Espinosa. A new experimental method to obtain the ion beam profile of focused ion beam nanotechnology systems. IJMEM, 1:61, 2012.

  • [31] Y. Yamamura, Y. Itikawa, and N. Itoh. Angular dependence of sputtering yields of monatomic solids. Institute of Plasms Physics IPPJ-AM-26, Nagoya University, 1, 1983.

  • [32] Y. Yamamura and H. Tawara. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atomic Data and Nuclear Data Tables, 62(2):149–253, 1996.

  • [33] Focused ion beam sputtering yield calculator. http://www. asu.edu/clas/csss/NUE/FIBSputterCalcYamamura.html, 2015 Jul.

  • [34] X. Wang, S. Xie, J. Liu, S. O. Kucheyev, and Y. M. Wang. Focused-ion-beam assisted growth, patterning, and narrowing the size distributions of ZnO nanowires for variable optical properties and enhanced nonmechanical energy conversion. Chemistry of Materials, 25(14):2819–2827, 2013.

  • [35] M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo. Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition. Advanced Optical Materials, 2(2):154–161, 2014.

  • [36] W. McKenzie, J. Pethica, and G. Cross. A direct-write, resistless hard mask for rapid nanoscale patterning of diamond. Diamond and Related Materials, 20(5):707–710, 2011.

  • [37] G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, and S. Juodkazis. 3D nano-structures for laser nano-manipulation. Beilstein Journal of Nanotechnology, 4(1):534–541, 2013.

  • [38] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334(6054):333–337, 2011.

  • [39] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma. Dielectric gradient metasurface optical elements. Science, 345(6194):298–302, 2014.

  • [40] A. Nadzeyka, L. Peto, S. Bauerdick, M. Mayer, K. Keskinbora, C. Grévent, M. Weigand, M. Hirscher, and G. Schütz. Ion beam lithography for direct patterning of high accuracy large area x-ray elements in gold on membranes. Microelectronic Engineering, 98:198–201, 2012.

  • [41] C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang. Creating optical near-field orbital angular momentum in a gold metasurface. Nano Letters, 15(4):2746–2750, 2015.

  • [42] E. Karimi, S. A .Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Science & Applications, 3(5):e167, 2014.

  • [43] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 10(4):308–312, 2015.

  • [44] D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet. Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces. Advanced Optical Materials, DOI: 10.1002/adom.201500494, 2015.

OPEN ACCESS

Journal + Issues

Search