Mechanical magnetometry of Cobalt nanospheres deposited by focused electron beam at the tip of ultra-soft cantilevers

Hugo Lavenant 1 , Vladimir Naletov 1 , 2 , Olivier Klein 1 , Grégoire de Loubens 1 , Laura Casado 3 ,  and José María De Teresa 3 , 4
  • 1 Service de Physique de l’État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur- Yvette, France
  • 2 Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
  • 3 Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Mariano Esquillor 50018 Zaragoza, Spain
  • 4 Instituto de Ciencia de Materiales de Aragón (ICMA), Departamento de Física de la Materia Condensada, Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain

Abstract

Using focused-electron-beam-induced deposition, Cobalt magnetic nanospheres with diameter ranging between 100 nm and 300 nm are grown at the tip of ultra-soft cantilevers. By monitoring the mechanical resonance frequency of the cantilever as a function of the applied magnetic field, the hysteresis curve of these individual nanospheres are measured. This enables the evaluation of their saturation magnetization, found to be around 430 emu/cm3 independent of the size of the particle, and to infer that the magnetic vortex state is the equilibrium configuration of these nanospheres at remanence.

SEM image of a 200 nm Co nanosphere grown at the tip of an ultra-soft cantilever by focus electron beam induced deposition.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Rugar D., Mamin H. J., Guethner P., Lambert S. E., Stern J. E., McFadyen I., Yogi T., Magnetic force microscopy: General principles and application to longitudinal recording media, J. Appl. Phys., 1990, 68, 1169-1183.

  • [2] Shinjo T., Okuno T., Hassdorf R., Shigeto K., Ono T., Magnetic Vortex Core Observation in Circular Dots of Permalloy, Science, 2000, 289, 930-932.

  • [3] Sidles J.A., Garbini J.L., Bruland K.J., Rugar D., Züger O., Hoen S., Yannoni C.S., Magnetic resonance force microscopy, Rev. Mod. Phys., 1995, 67, 249-265.

  • [4] Rugar D., Budakian R., Mamin H.J., Chui B.W., Single spin detection by magnetic resonance force microscopy, Nature, 2004, 430, 329-332.

  • [5] Wolny F., Obukhov Y., Mühl T., Weißker U., Philippi S., Leonhardt A., et al., Quantitative magnetic force microscopy on permalloy dots using an iron filled carbon nanotube probe, Ultramicroscopy, 2011, 111, 1360-1365.

  • [6] Hamadeh A., de Loubens G., Naletov V.V., Grollier J., Ulysse C., Cros V., Klein O., Autonomous and forced dynamics in a spin-transfer nano-oscillator: Quantitative magnetic-resonance force microscopy, Phys. Rev. B, 2012, 85, 140408.

  • [7] Mamin H.J., Rettner C.T., Sherwood M.H., Gao L., Rugar D., High field-gradient dysprosium tips for magnetic resonance force microscopy, Appl. Phys. Lett., 2012, 100, 013102.

  • [8] Mamin H.J., Rugar D., Sub-attonewton force detection at millikelvin temperatures, Appl. Phys. Lett., 2001, 79, 3358-3360.

  • [9] Degen C.L., Poggio M., Mamin H.J., Rettner C.T., Rugar D., Nanoscale magnetic resonance imaging, Proc. Natl. Acad. Sci., 2009, 106, 1313-1317.

  • [10] Hickman S.A., Moore E.W., Lee S.-G., Longenecker J.G., Wright S.J., Harrell L.E., Marohn J.A., Batch-fabrication of cantilevered magnets on attonewton-sensitivity mechanical oscillators for scanned-probe nanoscale magnetic resonance imaging, ACS Nano, 2010, 4, 7141-7150.

  • [11] Klein O., de Loubens G., Naletov V.V., Boust F., Guillet T., Hurdequint H., et al., Ferromagnetic resonance force spectroscopy of individual submicron-size samples, Phys. Rev. B, 2008, 78, 144410.

  • [12] Lee I., Obukhov Y., Xiang G., Hauser A., Yang F., Banerjee P., et al., Nanoscale scanning probe ferromagnetic resonance imaging using localized modes, Nature, 2010, 466, 845-848.

  • [13] Banerjee P., Wolny F., Pelekhov D.V., Herman M.R., Fong K.C., Weissker U., et al., Magnetization reversal in an individual 25 nm iron-filled carbon nanotube, Appl. Phys. Lett., 2010, 96, 252505.

  • [14] Utke I., Hoffmann P., Berger R., Scandella L., High-resolution magnetic Co supertips grown by a focused electron beam, Appl. Phys. Lett., 2002, 80, 4792-4794.

  • [15] Fernández-Pacheco A., de Teresa J.M., Córdoba R., Ibarra M.R., Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition, J. Phys. D Appl. Phys., 2009, 42, 055005.

  • [16] Belova L.M., Hellwig O., Dobisz E., Dahlberg E.D., Rapid preparation of electron beam induced deposition Co magnetic force microscopy tips with 10 nm spatial resolution, Rev. Sci. Instrum., 2012, 83, 093711.

  • [17] Chia H.-J., Guo F., Belova L.M., McMichael R.D., Nanoscale Spin Wave Localization Using Ferromagnetic Resonance Force Microscopy, Phys. Rev. Lett., 2012, 108, 087206.

  • [18] Guo F., Belova L.M., McMichael R.D., Spectroscopy and Imaging of Edge Modes in Permalloy Nanodisks, Phys. Rev. Lett., 2013, 110, 017601.

  • [19] Lee J., Yoo M.-W., Han D.-S., Kim S.-K., Size-selective resonant excitation of soft magnetic nano-spheres of three-dimensional magnetic vortex, arXiv:1311.0346.

  • [20] Pylypovskyi O.V., Sheka D.D., Gaididei Y., Bloch point structure in a magnetic nanosphere, Phys. Rev. B, 2012, 85, 224401.

  • [21] Johnson P., Gangopadhyay A.K., Kalyanaraman R., Nussinov Z., Demagnetization-borne microscale skyrmions, Phys. Rev. B, 2012, 86, 064427.

  • [22] de Loubens G., Naletov V.V., Klein O., Youssef J.B., Boust F., Vukadinovic N., Magnetic Resonance Studies of the Fundamental Spin-Wave Modes in Individual Submicron Cu/ NiFe/Cu Perpendicularly Magnetized Disks, Phys. Rev. Lett., 2007, 98, 127601.

  • [23] de Loubens G., Riegler A., Pigeau B., Lochner F., Boust F., Guslienko K.Y., et al., Bistability of Vortex Core Dynamics in a Single Perpendicularly Magnetized Nanodisk, Phys. Rev. Lett., 2009, 102, 177602.

  • [24] Naletov V.V., de Loubens G., Albuquerque G., Borlenghi S., Cros V., Faini G., et al., Identification and selection rules of the spin-wave eigenmodes in a normally magnetized nanopillar, Phys. Rev. B, 2011, 84, 224423.

  • [25] Pigeau B., de Loubens G., Klein O., Riegler A., Lochner F., Schmidt G., Molenkamp L.W., Optimal control of vortex-core polarity by resonant microwave pulses, Nature Phys., 2011, 7, 26-31.

  • [26] Pigeau B., Hahn C., de Loubens G., Naletov V.V., Klein O., Mitsuzuka K., et al., Measurement of the Dynamical Dipolar Coupling in a Pair of Magnetic Nanodisks Using a Ferromagnetic Resonance Force Microscope, Phys. Rev. Lett., 2012, 109, 247602.

  • [27] Serrano-Ramón L., Córdoba R., Rodriguez L.A., Magén C., Snoeck E., Gatel C., et al., Ultrasmall Functional Ferromagnetic Nanostructures Grown by Focused Electron-Beam-Induced Deposition, ACS Nano, 2011, 5, 7781-7787.

  • [28] De Teresa J.M., Córdoba R., Arrays of Densely Packed Isolated Nanowires by Focused Beam Induced Deposition Plus Ar+ Milling, ACS Nano, 2014, 8, 3788-3795.

  • [29] Córdoba R., Fernández-Pacheco R., Fernández-Pacheco A., Gloter A., Magén C., Stephan O., et al., Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM, Nanoscale Res. Lett., 2011, 6, 592.

  • [30] Fernández-Pacheco A., de Teresa J.M., Szkudlarek A., Córdoba R., Ibarra M.R., Petit D., et al., Magnetization reversal in individual cobalt micro- and nanowires grown by focusedelectron- beam-induced-deposition, Nanotechnology, 2009, 20, 475704.

  • [31] Marohn J.A., Fainchtein R., Smith D.D., An optimal magnetic tip configuration for magnetic-resonance force microscopy, Appl. Phys. Lett., 1998, 73, 3778-3780.

  • [32] Stipe B.C., Mamin H.J., Stowe T.D., Kenny T.W., Rugar D., Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry, Phys. Rev. Lett., 2001, 86, 2874-2877.

  • [33] Gysin U., Rast S., Aste A., Speliotis T., Werle C., Meyer E., Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry, Nanotechnology, 2011, 22, 285715.

  • [34] Albrecht T.R., Grütter P., Horne D., Rugar D., Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys., 1991, 69, 668-673.

  • [35] Charbois V., Détection Mécanique de la Résonance Ferromagnétique, Université Paris 7, 2003.

  • [36] Tandon S., Beleggia M., Zhu Y., De Graef M., On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part I: Analytical approach, J. Magn. Magn. Mater., 2004, 271, 9-26.

  • [37] Thiaville A., García J.M., Dittrich R., Miltat J., Schrefl T., Micromagnetic study of Bloch-point-mediated vortex core reversal, Phys. Rev. B, 2003, 67, 094410.

  • [38] Snoeck E., Gatel C., Lacroix L.M., Blon T., Lachaize S., Carrey J., et al., Magnetic Configurations of 30 nm Iron Nanocubes Studied by Electron Holography, Nano Lett., 2008, 8, 4293-4298.

  • [39] Biziere N., Gatel C., Lassalle-Balier R., Clochard M.C., Wegrowe J.E., Snoeck E., Imaging the Fine Structure of a Magnetic Domain Wall in a Ni Nanocylinder, Nano Letters, 2013, 13, 2053-2057.

  • [40] Tetienne J.-P., Hingant T., Rondin L., Rohart S., Thiaville A., Roch J.-F., Jacques V., Quantitative stray field imaging of a magnetic vortex core, Phys. Rev. B, 2013, 88, 214408.

  • [41] Belova L.M., Dahlberg E.D., Riazanova A., Mulders J.J.L., Christophersen C., Eckert J., Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth, Nanotechnology, 2011, 22, 145305.

  • [42] Fernández-Pacheco A., Serrano-Ramón L., Michalik J.M., Ibarra M.R., de Teresa J.M., O’Brien L., et al., Three dimensional magnetic nanowires grown by focused electron-beam induced deposition, Scientific Reports, 2013, 3, 1492.

  • [43] Lavrijsen R., Córdoba R., Schoenaker F.J., Ellis T.H., Barcones B., Kohlhepp J.T., et al., Fe:O:C grown by focused-electronbeam- induced deposition: magnetic and electric properties, Nanotechnology, 2011, 22, 025302.

  • [44] Gavagnin M., Wanzenboeck H.D., Belić D., Bertagnolli E., Synthesis of Individually Tuned Nanomagnets for Nanomagnet Logic by Direct Write Focused Electron Beam Induced Deposition, ACS Nano, 2013, 7, 777-784.

OPEN ACCESS

Journal + Issues

Search