Efficient forward second-harmonic generation from planar archimedean nanospirals

Roderick B. Davidson II 1 , Jed I. Ziegler 1 , Guillermo Vargas 1 , 2 , Sergey M. Avanesyan 1 , Yu Gong 3 , Wayne Hess 3  and Richard F. Haglund Jr. 1
  • 1 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
  • 2 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
  • 3 Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA

Abstract:

The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6·10−9, 8·10−9 and 1.3·10−8 for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 μWper nanoparticle. The nanospirals also exhibit selective conversion between polarization states. These experiments show that the intrinsic asymmetry of the nanospirals results in a highly efficient, two-dimensional harmonic generator that can be incorporated into metasurface optics.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. W. Boyd, Nonlinear optics. (Academic press, 2003).

  • [2] A. E. Grigorescu, C. W. Hagen, Nanotechnology 20(29), 292001 (2009).

  • [3] H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, S. A. Maier, Nano Letters 12(9), 4997-5002 (2012)

  • [4] R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, M. Kauranen, Opt. Express 19(27), 26866-26871 (2011).

  • [5] S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, M. Wegener, Phys. Rev. Lett. 109(1), 015502 (2012).

  • [6] G. F. Walsh, L. Dal Negro, Nanoscale 5(17), 7795-7799 (2013).

  • [7] Y. Zhang, N. K. Grady, C. Ayala-Orozco, N. J. Halas, Nano Letters 11(12), 5519-5523 (2011).

  • [8] F. Eftekhari, T. J. Davis, Phys. Rev. B 86(7), 075428 (2012).

  • [9] Y. Gorodetski, A. Drezet, C. Genet, T.W. Ebbesen, Phys. Rev. Lett. 110(20), 203906 (2013).

  • [10] V. K. Valev, J. J. Baumberg, C. Sibilia, V. T. Erbiest, AdvancedMaterials 25(18), 2517-2534 (2013).

  • [11] V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq,W. Gillijns, M. Ameloot, V. V. Moshchalkov, T. Verbiest, Nano Letters 9(11), 3945-3948 (2009).

  • [12] S. N. Volkov, K. Dolgaleva, R.W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, M. Kauranen, Phys. Rev. A 79(4) 043819, (2009).

  • [13] S. A. Maier, H. A. Atwater, Journal of Applied Physics 98(1) 011101, - (2005).

  • [14] A. Capretti, G. F.Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, L. Dal Negro, Opt. Express 20(14), 15797-15806 (2012).

  • [15] H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, M. Kauranen, Nano Letters 12(2), 673-677 (2012).

  • [16] J. I. Ziegler, R. F. Haglund, Nano Letters 10(8), 3013-3018 (2010).

  • [17] J. I. Ziegler, R. F. Haglund, Plasmonics 8(2), 571-579 (2013).

  • [18] D. Pestov, V. V. Lozovoy, M. Dantus, Opt. Express 17(16), 14351- 14361 (2009).

  • [19] A. M. Weiner, Rev. Sci. Instrum. 71(5), 1929-1960 (2000).

  • [20] M. D. McMahon, R. Lopez, R. F. Haglund, E. A. Ray, P. H. Bunton, Phys. Rev. B 73(4) 041401 (2006).

  • [21] B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, ACS Nano 7(7), 6321-6329, (2013).

  • [22] M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, Phys. Rev. X 2(3), 031010 (2012).

  • [23] A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J.Coles, N. I. Zheludev, Phys. Rev. Lett. 90(10), 107404 (2003).

  • [24] M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, Phys. Rev. Lett 95(22), 227401 (2005).

  • [25] M. Ren, E. Plum, J. Xu, N. I. Zheludev, NatCommun 3, 833 (2012).

  • [26] N. Calander, I. Gryczynski, Z. Gryczynski, Chemical Physics Letters 434(4–6), 326-330 (2007).

  • [27] J. C. Heckel, G. Chumanov, The Journal of Physical Chemistry C 115(15), 7261-7269 (2011).

  • [28] N. I. Z. Y. S. Kivshar, Nature Materials 11, 7 (2012).

OPEN ACCESS

Journal + Issues

Nanophotonics covers recent international research results, specific developments in the field and novel applications. Nanophotonics focuses on the interaction of photons with nano-structures, such as carbon nanotubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue and DNA. It belongs to the top journals in the field.

Search