Limitations of Extreme Nonlinear Ultrafast Nanophotonics

Abstract

High-harmonic generation (HHG) has been established as an indispensable tool in optical spectroscopy. This effect arises for instance upon illumination of a noble gas with sub-picosecond laser pulses at focussed intensities significantly greater than 1012W/cm2. HHG provides a coherent light source in the extreme ultraviolet (XUV) spectral region, which is of importance in inner shell photo ionization of many atoms and molecules. Additionally, it intrinsically features light fields with unique temporal properties. Even in its simplest realization, XUV bursts of sub-femtosecond pulse lengths are released. More sophisticated schemes open the path to attosecond physics by offering single pulses of less than 100 attoseconds duration.

Resonant optical antennas are important tools for coupling and enhancing electromagnetic fields on scales below their free-space wavelength. In a special application, placing field-enhancing plasmonic nano antennas at the interaction site of an HHG experiment has been claimed to boost local laser field strengths, from insufficient initial intensities to sufficient values. This was achieved with the use of arrays of bow-tie-shaped antennas of ∼ 100nm in length. However, the feasibility of this concept depends on the vulnerability of these nano-antennas to the still intense driving laser light.We show, by looking at a set of exemplary metallic structures, that the threshold fluence Fth of laser-induced damage (LID) is a greatly limiting factor for the proposed and tested schemes along these lines.We present our findings in the context of work done by other groups, giving an assessment of the feasibility and effectiveness of the proposed scheme.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] T. Pfeifer, C. Spielmann, and G. Gerber. Femtosecond x-ray science. Rep. Prog. Phys., 69(2):443-505, 2006.

  • [2] T. Ditmire, E. T. Gumbrell, R. A. Smith, J. W. G. Tisch, D. D. Meyerhofer, and M. H. R. Hutchinson. Spatial Coherence Measurement of Soft X-Ray Radiation Produced by High Order Harmonic Generation. Phys. Rev. Lett., 77(23):4756-4759, 1996.

  • [3] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T.Attwood, R. Kienberger, F. Krausz, and U. Kleineberg. Single- Cycle Nonlinear Optics. Science, 320(5883):1614-1617, 2008.

  • [4] T. Popmintchev, M. C Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn. The attosecond nonlinear optics of bright coherent Xray generation. Nat Photon, 4(12):822-832, 2010.

  • [5] H. J. Wörner, J. B. Bertrand, B. Fabre, J. Higuet, H. Ruf, A. Dubrouil, S. Patchkovskii, M. Spanner, Y. Mairesse, V. Blanchet, E. Mével, E. Constant, P. B. Corkum, and D. M. Villeneuve. Conical Intersection Dynamics in NO2 Probed by Homodyne High-Harmonic Spectroscopy. Science, 334(6053):208-212, 2011.

  • [6] A. N. Pfeiffer, C. Cirelli, M. Smolarski, and U. Keller. Recent attoclock measurements of strong field ionization. Attosecond spectroscopy, 414(0):84-91, 2013.

  • [7] P. B. Corkum and F. Krausz. Attosecond science. Nat Phys, 3(6):381-387, 2007.

  • [8] F. Krausz and M. Y. Ivanov. Attosecond physics. Rev.Mod. Phys., 81(1):163-234, 2009.

  • [9] G. Sansone, L. Poletto, and M. Nisoli. High-energy attosecond light sources. Nat Photon, 5(11):655-663, 2011.

  • [10] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompré, G. Mainfray, and C.Manus. Multiple-harmonic conversion of 1064nmradiation in rare gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 21(3):L31, 1988.

  • [11] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett., 71(13):1994, 1993.

  • [12] J. L. Krause, K. J. Schafer, and K. C. Kulander. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett., 68(24):3535-3538, 1992.

  • [13] T. Brabec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys., 72(2):545, 2000.

  • [14] E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa. Generation of highly coherent submicrojoule soft x rays by high-order harmonics. Phys. Rev. A, 66(2):021802, 2002.

  • [15] A. D. Shiner, C. A. Trallero-Herrero, N. Kajumba, H. C Bandulet, D. Comtois, F. Légaré, M. Giguère, J.-C. Kieffer, P. B. Corkum, and D. M. Villeneuve. Wavelength Scaling of High Harmonic Generation Eflciency. Phys. Rev. Lett., 103(7):073902, 2009.

  • [16] P. Zeitoun, P. Balcou, S. Bucourt, F. Delmotte, G. Dovillaire, D. Douillet, J. Dunn, G. Faivre, M. Fajardo, K. A. Goldberg, S. Hubert, J. R. Hunter, M. Idir, S. Jacquemot, S. Kazamias, S. Le Pape, X. Levecq, C. L. S. Lewis, R. Marmoret, P. Mercère, A.-S Morlens, P. P. Naulleau, M. F. Ravet, C. Rémond, J. J. Rocca, R. F. Smith, P. Troussel, C. Valentin, and L. Vanbostal. Recent developments in X-UV optics and X-UV diagnostics. Appl. Phys. B, 78(7-8):983-988, 2004.

  • [17] J. Gautier, P. Zeitoun, C. Hauri, A.-S Morlens, G. Rey, C. Valentin, E. Papalarazou, J.-P Goddet, S. Sebban, F. Burgy, P. Mercère, M. Idir, G. Dovillaire, X. Levecq, S. Bucourt, M. Fajardo, H. Merdji, and J.-P Caumes. Optimization of the wave front of high order harmonics. The European Physical Journal D, 48(3):459-463, 2008.

  • [18] J. Lohbreier, S. Eyring, R. Spitzenpfeil, C. Kern, M. Weger, and C. Spielmann. Maximizing the brilliance of high-order harmonics in a gas jet. New J. Phys., 11(2):023016, 2009.

  • [19] S. Eyring, C. Kern, M. Zürch, and C. Spielmann. Improving high-order harmonic yield usingwavefront-controlled ultrashort laser pulses. Opt. Express, 20(5):5601-5606, 2012.

  • [20] K. Nakajima. Compact X-ray sources: Towards a table-top freeelectron laser. Nat Phys, 4(2):92-93, 2008.

  • [21] M. Altarelli, R. Brinkmann, M. Chergui, W. Decking, B. Dobson, S. Düsterer, G. Grübel,W. Graeff, H. Graafsma, J. Hajdu, J.Marangos, J. Pflüger, H. Redlin, D. Riley, I. Robinson, J. Rossbach, A. Schwarz, K. Tiedtke, T. Tschentscher, I. Vartaniants, H. Wabnitz, H. Weise, R. Wichmann, K. Witte, Wolf A., M. Wulff, and M. Yurkov. The European X-Ray Free-Electron Laser Technical design report. DESY XFEL Project Group, 2007.

  • [22] R. Spitzenpfeil, S. Eyring, C. Kern, C. Ott, J. Lohbreier, J. Henneberger, N. Franke, S. Jung, D.Walter, M. Weger, C.Winterfeldt, T. Pfeifer, and C. Spielmann. Enhancing the brilliance of highharmonic generation. Appl. Phys. A, 96(1):69-81, 2009.

  • [23] M. C Chen, M. R. Gerrity, S. Backus, T. Popmintchev, X. Zhou, P. Arpin, X. Zhang, H. C. Kapteyn, and M. M. Murnane. Spatially coherent, phase matched, high-order harmonic EUV beams at 50 kHz. Opt. Express, 17(20):17376-17383, 2009.

  • [24] S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann. High harmonic generation by novel fiber amplifier based sources. Opt. Express, 18(19):20242-20250, 2010.

  • [25] M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, and A. Tünnermann. Towards isolated attosecond pulses at megahertz repetition rates. Nat Photon, 7(7):555-559, 2013.

  • [26] A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.- D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem. Single-pass high-harmonic generation at 20.8 MHz repetition rate. Opt. Lett., 36(17):3428-3430, 2011.

  • [27] R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye. Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity. Phys. Rev. Lett., 94(19):193201, 2005.

  • [28] E. Seres, J. Seres, and C. Spielmann. Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate. Opt. Express, 20(6):6185-6190, 2012.

  • [29] S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim. Highharmonic generation by resonant plasmon field enhancement. Nature, 453(7196):757-760, 2008.

  • [30] W. L. Barnes, A. Dereux, and T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424(6950):824-830, 2003.

  • [31] M. Kauranen and A. V. Zayats. Nonlinear plasmonics. Nat Photon, 6(11):737-748, 2012.

  • [32] R. Petry, M. Schmitt, and J. Popp. Raman Spectroscopy-A Prospective Tool in the Life Sciences. Chem. Phys. Chem., 4(1):14-30, 2003.

  • [33] G. Herink, D. R. Solli, M. Gulde, and C. Ropers. Field-driven photoemission from nanostructures quenches the quiver motion. Nature, 483(7388):190-193, 2012.

  • [34] M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff. Attosecond physics in photoemission from a metal nanotip. Journal of Physics B: Atomic,Molecular andOptical Physics, 45(7):074006, 2012.

  • [35] A. Husakou, S.-J. Im, and J. Herrmann. Theory of plasmonenhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases. Phys. Rev. A, 83(4):043839, 2011.

  • [36] M. F. Ciappina, T. Shaaran, and M. Lewenstein. High order harmonic generation in noble gases using plasmonic field enhancement. Annalen der Physik, 525(1-2):97-106, 2013.

  • [37] A. Husakou, F. Kelkensberg, J. Herrmann, and M. J. J. Vrakking. Polarization gating and circularly-polarized high harmonic generation using plasmonic enhancement in metal nanostructures. Opt. Express, 19(25):25346-25354, 2011.

  • [38] N. Pfullmann. Nano-antenna-assisted high-order harmonic generation. Dissertation, GottfriedWilhelm Leibniz Universität, Hannover, 2012.

  • [39] M. Sivis, M. Duwe, B. Abel, and C. Ropers. Nanostructureenhanced atomic line emission. Nature, 485(7397):E1-E2, 2012.

  • [40] M. Sivis, M. Duwe, B. Abel, and C. Ropers. Extreme-ultraviolet light generation in plasmonic nanostructures. Nat Phys, 9(5):304-309, 2013.

  • [41] I.-Y. Park, J. Choi, D.-H. Lee, S. Han, S. Kim, and S.-W. Kim. Generation of EUV radiation by plasmonic field enhancement using nano-structured bowties and funnel-waveguides. Annalen der Physik, 525(1-2):87-96, 2013.

  • [42] P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl. Resonant optical antennas. Science, 308(5728):1607-1609, 2005.

  • [43] L. Novotny and N. van Hulst. Antennas for light. Nat Photon, 5(2):83-90, 2011.

  • [44] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne. Biosensingwith plasmonic nanosensors. NatMater, 7(6):442-453, 2008.

  • [45] L. Novotny and S. J. Stranick. Near-Field Optical Microscopy and Spectroscopy with Pointed Probes. Annu. Rev. Phys. Chem, 57(1):303-331, 2006.

  • [46] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green. Surface plasmon enhanced silicon solar cells. J. Appl. Phys., 101(9):093105, 2007.

  • [47] M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A.Maier, and M. S. Kim. Quantumplasmonics. Nat Phys, 9(6):329-340, 2013.

  • [48] J. Jahns and S. Helfert. Introduction to micro- and nanooptics. Wiley-VCH-Verl., Weinheim, 2012.

  • [49] J. D. Jackson. Classical electrodynamics. Wiley, 1975.

  • [50] L. Novotny. Effective wavelength scaling for optical antennas. Phys. Rev. Lett., 98(26), 2007.

  • [51] K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma. Power flowfrom a dipole emitter near an optical antenna. Opt. Express, 19(20):19084-19092, 2011.

  • [52] E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso. Plasmonic Laser Antennas and Related Devices. IEEE Journal of Selected Topics in Quantum Electronics, 14(6):1448-1461, 2008.

  • [53] K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate. Optical antennas: Resonators for local field enhancement. J. Appl. Phys., 94(7):4632-4642, 2003.

  • [54] R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant. Charge distribution induced inside complex plasmonic nanoparticles. Opt. Express, 18(3):3035-3044, 2010.

  • [55] J. Merlein. Lineare und nichtlineare Nanoplasmonik. Dissertation, Universität Konstanz, 2008.

  • [56] D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. S. Kino, and W. E. Moerner. Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible. Nano Lett, 4(5):957-961, 2004.

  • [57] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner. Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas. Phys. Rev. Lett., 94(1):017402, 2005.

  • [58] H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen. Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt. Express, 16(11):7756-7766, 2008.

  • [59] S. Park, J.W. Hahn, and J. Y. Lee. Doubly resonant metallic nanostructure for high conversion eflciency of second harmonic generation. Opt. Express, 20(5):4856-4870, 2012.

  • [60] J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde. Attosecond Pulse Trains Generated Using Two Color Laser Fields. Phys. Rev. Lett., 97(1):013001, 2006.

  • [61] I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat Photon, 5(11):677-681, 2011.

  • [62] N. Pfullmann, C. Waltermann, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner. Nano-antenna-assisted harmonic generation. Appl. Phys. B, 113(1):75-79, 2013.

  • [63] Y.-Y. Yang, A. Scrinzi, A. Husakou, Q.-G. Li, S. L. Stebbings, F. Süßmann, H.-J. Yu, S. Kim, E. Rühl, J. Herrmann, X.-C. Lin, and M. F. Kling. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses. Opt. Express, 21(2):2195-2205, 2013.

  • [64] T. Shaaran, M. F. Ciappina, and M. Lewenstein. Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement. Phys. Rev. A, 86(2):023408, 2012.

  • [65] M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein. Highorder- harmonic generation from inhomogeneous fields. Phys. Rev. A, 85(3):033828, 2012.

  • [66] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B.W. Shore, and M. D. Perry. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B, 53(4):1749-1761, 1996.

  • [67] M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett., 80(18):4076-4079, 1998.

  • [68] S. I. Anisimov, B. L. Kapeliov, and T. L. Perelman. Electron- Emission From Surface of Metals Induced By Ultrashort Laser Pulses. Zh. Eksp. Teor. Fiz., 66(2):776-781, 1974.

  • [69] J. König, S. Nolte, and A. Tünnermann. Plasma evolution during metal ablation with ultrashort laser pulses. Opt. Express, 13(26):10597-10607, 2005.

  • [70] D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski. Lasersolid interaction in the femtosecond time regime. Appl. Surf. Sci., 109:1-10, 1997.

  • [71] H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 57(18):11334-11340, 1998.

  • [72] J. Huang, Y. Zhang, J. K. Chen, and M. Yang. Ultrafast solid-liquidvapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains. Front. Energy, 6(1):1-11, 2012.

  • [73] P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Phys. Rev. Lett., 61(25):2886-2889, 1988.

  • [74] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 63(2):109-115, 1996.

  • [75] Y. Jee, M. F. Becker, and R. M. Walser. Laser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B, 5(3):648-659, 1988.

  • [76] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B.W. Shore, and M. D. Perry. Optical ablation by high-power short-pulse lasers. J. Opt. Soc. Am. B, 13(2):459-468, 1996.

  • [77] C. Kern. ExtremeNonlinear Optics with Spatially Controlled Light Fields. Dissertation, Friedrich-Schiller-Universität, Jena, 2014.

  • [78] J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias. Damage threshold dependence on electron-phonon coupling in Au and Ni films. Appl. Surf. Sci., 127-129(0):40-45, 1998.

  • [79] J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek. Ultrashortpulse laser ablation of indium phosphide in air. Appl. Phys. A, 72(1):89-94, 2001.

  • [80] X. Ni, C.-Y. Wang, Li Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang. Parametric study on femtosecond laser pulse ablation of Au films. Appl. Surf. Sci., 253(3):1616-1619, 2006.

  • [81] J. M. Liu. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett., 7(5):196-198, 1982.

  • [82] J. Krüger, D. Dufft, R. Koter, and A. Hertwig. Femtosecond laserinduced damage of gold films: Photon-Assisted Synthesis and Processing of Functional Materials - E-MRS-H Symposium. Appl. Surf. Sci., 253(19):7815-7819, 2007.

  • [83] D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation. Appl. Surf. Sci., 150(1-4):101-106, 1999.

  • [84] A. M. Summers, A. S. Ramm, G. Paneru, M. F. Kling, B. N. Flanders, and C. A. Trallero-Herrero. Optical damage threshold of au nanowires in strong femtosecond laser fields. Opt. Express, 22(4):4235-4246, 2014.

  • [85] J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis. Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses. Proc. Natl. Acad. Sci. U.S.A., 108(47):18887-18892, 2011.

  • [86] C. de Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame. Surface Properties of Femtosecond Laser Ablated PMMA. ACS Appl. Mater. Interfaces, 2(8):2377-2384, 2010.

  • [87] C. Kern, M. Zürch, J. Petschulat, T. Pertsch, B. Kley, T. Käsebier, U. Hübner, and C. Spielmann. Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Autargets. Appl. Phys. A, 104(1):15-21, 2011.

  • [88] D. Cialla, R. Siebert, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tünnermann, T. Pertsch, B. Dietzek, and J. Popp. Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhancedRamanscattering substrates. Anal. Bioanal. Chem., 394(7):1811-1818, 2009.

  • [89] A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg. Femtosecond laser near-field ablation from gold nanoparticles. Nat Phys, 2(1):44-47, 2006.

  • [90] A. Plech, P. Leiderer, and J. Boneberg. Femtosecond laser near field ablation. Laser & Photon. Rev., 3(5):435-451, 2009.

  • [91] V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, B. de Clercq, A. V. Silhanek, Y. Jeyaram, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, S. Russev, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest. Plasmon-Enhanced Sub- Wavelength Laser Ablation: Plasmonic Nanojets. AdvancedMaterials, 24(10):OP29-OP35, 2012.

  • [92] N. Pfullmann, M. Noack, J. de Cardoso Andrade, S. Rausch, T. Nagy, C. Reinhardt, V. Knittel, R. Bratschitsch, A. Leitenstorfer, D. Akemeier, A. Hütten, M. Kovačev, and U. Morgner. Nanoantennae assisted emission of extreme ultraviolet radiation. Annalen der Physik, 2014.

  • [93] M. J. Weber. Handbook of optical materials. CRC Press, Boca Raton, 2003.

  • [94] G. Xu, Y. Chen, M. Tazawa, and P. Jin. Influence of dielectric properties of a substrate upon plasmon resonance spectrum of supported Ag nanoparticles. Appl. Phys. Lett, 88(4):043114, 2006.

OPEN ACCESS

Journal + Issues

Nanophotonics covers recent international research results, specific developments in the field and novel applications. Nanophotonics focuses on the interaction of photons with nano-structures, such as carbon nanotubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue and DNA. It belongs to the top journals in the field.

Search