Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

Marcel Di Vece 1 , Giorgos Giannakoudakis 1 , Astrid Bjørkøy 2  and Wingjohn Tang 1
  • 1 Nanophotonics— Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
  • 2 Department of Physics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway


The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ozbay, E. Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006;311:189-193.

  • [2] Novotny L. Hecht, B.; Principles of Nano-Optics, Cambridge University Press, 2008.

  • [3] Kauranen, M. Zayats, A.V. Nonlinear plasmonics. Nat. Photon. 2012;6:737.

  • [4] Deeb, C. Zhou, X. Miller, R. Gray, S.K. Marguet, S. Plain, J. Wiederrecht, G.P. Bachelor, R. Size Dependence of the Plasmonic Near-Field Measured via Single-Nanoparticle Photoimaging. J. Phys. Chem. C 2012;116:24734-24740.

  • [5] Ciracě, C. Hill, R.T. Mock, J.J. Urzhumov, Y. Fernández- Domínguez, A.I. Maier, S.A. Pendry, J.B. Chilkoti, A. Smith, D.R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012;337:1072-1074.

  • [6] Nie, S. Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997;275:1102-1106.

  • [7] Michaels, A.M. Jiang, J. Brus, L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. J. Phys. Chem. B 2000;104:11965-11971.

  • [8] García-Martín, A. Ward, D.R. Natelson, D. Cuevas, J.C. Field enhancement in subnanometer metallic gaps. Phys. Rev. B 2011;83:193404-193404-4.

  • [9] Nien, L.W. Lin, S.C. Chao, B.K. Chen, M.J. Li, J.H. Hsueh, C.H. Giant Electric Field Enhancement and Localized Surface Plasmon Resonance by Optimizing Contour Bowtie Nanoantennas. J. Phys. Chem. C 2013;117:25004-25011.

  • [10] Hao E. Schatz, G.C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004;120:357-366.

  • [11] Yurtsever A. Zewail, A.H. Direct Visualization of Near-Fields in Nanoplasmonics and Nanophotonics. Nano Lett. 2012;12:3334- 3338.

  • [12] Herink, G. Solli, D.R. Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 2012;483:190-193.

  • [13] Grubisic, A. Ringe, E. Cobley, C.M. Xia, Y.Marks, L.D. Van Duyne, R.P. Nesbitt, D.J. Plasmonic Near-Electric Field Enhancement Effects in Ultrafast Photoelectron Emission: Correlated Spatial and Laser Polarization Microscopy Studies of Individual Ag Nanocubes. Nano Lett. 2012;12:4823-4829.

  • [14] Dombi, P. Hörl, A. Rácz, P. Márton, I. Trügler, A. Krenn, J.R. Hohenester, U. Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles. Nano Lett. 2013;13:674-678.

  • [15] Einstein A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 1905;17:132-148.

  • [16] Keldysh, L.V. Ionization in the Field of a Strong Electromagnetic Wave. Sov. Phys. JETP 1965;20:1307-1314.

  • [17] Zherebtsov, S. Fennel, T. Plenge, J. Antonsson, E. Znakovskaya1, I. Wirth, A. Herrwerth, O. Süßmann, F. Peltz, C. Ahmad, I. Trushin, S.A. Pervak, V. Karsch, S. Vrakking, M.J.J.J. Langer, B. Graf, C. Stockman, M.I. Krausz, F. Rühl, E. and Kling M.F. Controlled near field enhanced electron acceleration from dielectric nanospheres with intense few cycle laser fields. Nat. Phys.2011;7:656-662

  • [18] Süßmann F. Seiffert, L. Zherebtsov, S. Mondes, V. Stierle, J. Arbeiter, M. Plenge, J. Rupp, P. Peltz, C. Kessel, A. Trushin, S.A. Ahn, B. Kim, D. Graf, C. Rühl, E. Kling M.F. Fennel, T. Field propagation-induced directionality of carrier-envelope phasecontrolled photoemission from nanospheres. Nat. Commun. 2015;6:7944-7953

  • [19] Passig, J. Irsig, R. Truong, N.X. Fennel, Th. Tiggesbäumker, J. Meiwes-Broer, K.H. Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy. New J. Phys. 2012;14:085020-085020-13.

  • [20] Davidovits, P. Egger, M.D. Scanning Laser Microscope. Nature 1969;223:831-831.

  • [21] Haberland, H.Mail, M. Mossier, M. Oiang, Y. Reiners, T. Thurner, Y. Filling of micron-sized contact holes with copper by energetic cluster impact. J. Vac. Sci. Technol. A. 1994;12:2925-2930.

  • [22] de Heer, W.A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 1993;65:611- 676.

  • [23] Wegner, K. Piseri, P. Tafreshi, H.V. Milani, P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D: Appl. Phys. 2006;39:R439–R459.

  • [24] Polking, M.J. Umbach, C.C. Radiation-induced surface conductivity in an alkaline-earth boroaluminosilicate glass measured with elevated-temperature scanning probe microscopy. J. Am. Ceram. Soc. 2005;88:2442–2446.

  • [25] Kreibig, U. Vollmer, M. Optical Properties of Metal Clusters. Springer, Berlin, 1995.

  • [26] Dulkeith, E. Niedereichholz, T. Klar, T.A. Feldmann, J. von Plessen, G. Gittins, D.I. Mayya, K.S. Caruso, F. Plasmon emission in photoexcited gold nanoparticles. Phys Rev. B. 2004;70:205424-205424-4.

  • [27] Fennel, Th. Döppner, T. Passig, J. Schaal, Ch. Tiggesbäumker, J. Meiwes-Broer, K.H. Plasmon-Enhanced Electron Acceleration in Intense Laser Metal-Cluster Interactions. Phys. Rev. Lett. 2007;98:143401-143401-4.

  • [28] Fang, Z. Zhen, Y.Z. Neumann, O. Polman, A. García de Abajo, F.J. Nordlander, P. Halas, N.J. Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Lett. 2013;13:1736-1742.

  • [29] Lukianova-Hleb,E. Hu, Y. Latterini, L. Tarpani, L. Lee, S. Drezek, R.A. Hafner, J.H. Lapotko, D.O. Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles. ACS Nano 2010;4:2109–2123.

  • [30] Boustead, I. Charlesby, A. Thermoluminescence in polyethylene. I. Electron traps. Proc. Roy. Soc. Lond. A. 1970;316:291- 302.

  • [31] Charlesby, A. Partridge, R.H. The thermoluminescence of irradiated polyethylene and other polymers. Proc. Roy. Soc. Lond. A., 1963;271:170-187.

  • [32] Linkens, A. Vanderschueren, J. Experimental studies on the relationship between thermoluminescence and molecular relaxation processes in polymers. Journal of Electrostatics, 1977;3:149-154.

  • [33] Boustead, I, Thermoluminescence in polyethylene: II. Dose kinetics. Proc. Roy. Soc. Lond. A, 1970;318:459-471.

  • [34] Nyswander R.E. Cohn, B. Measurement of Thermoluminescence of glass exposed to light. J. Opt. Soc. A 1930;20:131-136.

  • [35] Johns H.E, Laughlin J.S. Interaction of radiation with matter.In: Hine G, Brownell G, eds. Radiation Dosimetry.NewYork, NY: Academic Press; 1956;49.

  • [36] Thompson, A.C. Vaughan, D.

  • [Eds.], X-ray Data Booklet, second ed., Lawrence Berkeley National Laboratory, Berkeley, 2001.

  • [37] Herz, R.H. The Recording of Electron Tracks in Photographic Emulsions. Phys. Rev. 1949;75:479-485.

  • [38] Hofer, K.G. Biophysical Aspects of Auger Processes. Acta Oncologica 1996;35:189-196.

  • [39] Egerton, R.F.; Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 2009;72:016502-25.

  • [40] Hovington, P. Druiin, D. Gauvin, R. CASINO: A new Monte Carlo code in C language for electron beam interaction —part I: Description of the program. Scanning 1997;19:1–14.

  • [41] National Institute of Standards and Technology, estar database

  • [42] Herink, G. Solli, D.R. Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 2012;483:190-193.

  • [43] Muskens, O. Christofilos, D. Del Fatti, N. Vallée, F. Optical response of a single noble metal nanoparticle. J. Opt. A: Pure Appl. Opt. 2006;8:S264–S272.

  • [44] Corkum, Plasma Perspective on Strong-Field Multiphoton Ionisation. Phys. Rev. Lett. 1993;71:1994-1997

  • [45] Saalman, U. Rost, J.M. Rescattering for Extended Atomic Systems. Phys. Rev. Lett. 2008;100: 133006-130007-4

  • [46] Fennel, Th. Meiwes-Broer, K.-H. Tiggesbäumker, J. Reinhard P.- G. Dinh P. M. and Suraud E. Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 2010:82;1793-1842

  • [47] Herrmann, L.O. Valev, V.K. Tserkezis, C. Barnard, J.S. Kasera, S. Scherman, O.A. Aizpurua, J. Baumberg, J.J. Threading plasmonic nanoparticle strings with light. Nat. Commun. 2014;5:4568- 4568-6.


Journal + Issues

Nanophotonics covers recent international research results, specific developments in the field and novel applications. Nanophotonics focuses on the interaction of photons with nano-structures, such as carbon nanotubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue and DNA. It belongs to the top journals in the field.