Kerr optical frequency combs: theory, applications and perspectives

  • 1 FEMTO-ST Institute, CNRS & University Bourgogne Franche-Comté, Optics Department, 15B Avenue des Montboucons, 25030 Besançon cedex, France

Abstract

The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Matsko A. B., Ilchenko V. S., Optical resonators with whispering gallery modes I: Basics, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 3.

  • [2] Ilchenko V. S., Matsko A. B., Optical Resonators With Whispering-Gallery Modes-Part II: Applications, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 15.

  • [3] Chiasera A., Dumeige Y., Féron P., Ferrari M., Jestin Y., Nunzi Conti G., Pelli S., Soria S., Righini G. C., Spherical whisperinggallery- mode microresonators, Laser Photon. Rev. 2010, 51, 457.

  • [4] Kippenberg T. J., Spillane S. M., Vahala K. J., Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity, Phys. Rev. Lett. 2004, 93, 083904.

  • [5] Savchenkov A. A., Matsko A. B., Strekalov D., Mohageg M., Ilchenko V. S.,Maleki L., Low Threshold Optical Oscillations in a WhisperingGallery ModeCaF2 Resonator, Phys. Rev. Lett. 2004, 93, 243905.

  • [6] Del’Haye P., Schliesser A., Arcizet A., Holzwarth R., Kippenberg T. J., Optical frequency comb generation from a monolithic microresonator, Nature 2007, 450, 1214.

  • [7] Kippenberg T. J., Holzwarth R., Diddams S. A., Microresonator- Based Optical Frequency Combs, Science 2011, 322, 555.

  • [8] Chembo Y. K., Strekalov D. V., Yu N., Spectrum and Dynamics of Optical Frequency Combs Generated with Monolithic Whispering Gallery Mode Resonators, Phys. Rev. Lett. 2010, 104, 103902.

  • [9] Chembo Y. K., Yu N., Modal expansion approach to opticalfrequency- comb generation with monolithic whisperinggallery- mode resonators, Phys. Rev. A 2010, 82, 033801.

  • [10] Chembo Y. K., Yu N., On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators, Opt. Lett. 2010, 35, 2696.

  • [11] Matsko A. B., Savchenkov A. A., Maleki L., Normal groupvelocity dispersion Kerr frequency comb, Opt. Lett. 2012, 37, 43.

  • [12] Agha I. H., Okawachi Y., Gaeta A. L., Opt. Express 2009, 17, 16209.

  • [13] Matsko A. B., Savchenkov A. A., Liang W., Ilchenko V. S., Seidel D., Maleki L., Mode-locked Kerr frequency combs, Opt. Lett. 2011, 36, 2845.

  • [14] Chembo Y. K., Menyuk C. R., Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators, Phys. Rev. A 2013, 87, 053852.

  • [15] Coen S., Randle H. G., Sylvestre T., Erkintalo M., Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model, Opt. Lett. 2013, 38, 37.

  • [16] Lugiato L. A., Lefever R., Spatial Dissipative Structures in Passive Optical Systems, Phys. Rev. Lett. 1987, 58, 2209.

  • [17] Coillet A., Balakireva I., Henriet R., Saleh K., Larger L., Dudley J. M., Menyuk C. R., Chembo Y. K., Azimuthal Turing Patterns, Bright and Dark Cavity Solitons in Kerr Combs generated with Whispering-Gallery Mode Resonators, IEEE Photonics Journal 2013, 5, 6100409.

  • [18] Godey C., Balakireva I. V., Coillet A., Chembo Y. K., Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes, Phys. Rev. A. 2014, 89, 063814.

  • [19] Parra-Rivas P., Gomila D., Matias M. A., Coen S., Gelens L., Dynamics of localized and patterned structures in the Lugiato- Lefever equation determine the stability and shape of optical frequency combs, Phys. Rev. A. 2014, 89, 043813.

  • [20] Levy J. S., Gondarenko A., Foster M. A., Turner-Foster A. C.,Gaeta A. L., Lipson M.,CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects, Nature Photonics 2010, 4, 37.

  • [21] Ferdous F., Miao H., Leaird D. E., Srinivasan K.,Wang J., Chen L., Varghese L. T., Weiner A. M., Spectral line-by-line pulse shaping of on-chip microresonator frequency combs, Nature Photonics 2011, 5, 770.

  • [22] Moss D. J., Morandotti R., Gaeta A. L., Lipson M., New CMOScompatible platforms based on silicon nitride and Hydex for nonlinear optics, Nature Photonics 2013, 7, 597.

  • [23] Liang W., Eliyahu D., Ilchenko V. S., Savchenkov A. A., Matsko A. B., Seidel D., Maleki L., High spectral purity Kerr frequency comb radio frequency photonic oscillator, Nature Communications 2015, 6, 7957.

  • [24] Savchenkov A. A., Matsko A. B., Ilchenko V. S., Maleki L., Optical resonators with ten million finesse, Opt. Express 2007, 115, 6768.

  • [25] Grudinin I. S., Yu N., Maleki L., Generation of optical frequency combs with a CaF2 resonator, Opt. Lett. 2009, 34, 878-880.

  • [26] Sprenger B., Schwefel H. G. L., Lu Z. H., Svitlov S., Wang, L. J., CaF2 whispering-gallery-mode-resonator stabilized-narrowlinewidth laser, Opt. Lett. 2010, 35, 2870-2872

  • [27] Tavernier H., Salzenstein P., Volyanskiy K., Chembo Y. K., Larger L., Magnesium Fluoride Whispering Gallery Mode Disk- Resonators for Microwave Photonics Applications, IEEE Phot. Tech. Lett. 2010, 22, 1629-1631.

  • [28] Liang W., Savchenkov A. A., Matsko A. B., Ilchenko V. S., Seidel D.,Maleki L., Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator, Opt. Lett. 2011, 36, 2290.

  • [29] Henriet R., Coillet A., Saleh K., Larger L., Chembo Y. K., Barium fluoride and lithium fluoride whispering-gallery mode resonators for photonics applications, Opt. Eng. 2014, 53, 071821.

  • [30] Lin G., Diallo S., Henriet R., Jacquot M., Chembo Y. K., Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor, Opt. Lett. 2014, 39, 6009.

  • [31] Henriet R., Lin G., Coillet A., Jacquot M., Furfaro L., Larger L., Chembo Y. K. Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor, Opt. Lett. 2015, 40, 1567.

  • [32] Volyanskiy K., Salzenstein P., Tavernier H., Pogurmirskiy M., Chembo Y. K., Larger L., Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode diskresonators and phase modulation, Opt. Express. 2010, 18, 22358-22363.

  • [33] Papp S. B., Diddams S. A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 2011, 84, 053833.

  • [34] Ilchenko V. S., Savchenkov A. A., Byrd J., Solomatine I., Matsko A. B., Seidel D., Maleki L., Crystal quartz optical whisperinggallery resonators, Opt. Lett. 2008, 33, 1569-1571.

  • [35] Hausmann B. J. M., Bulu I., Venkataraman V., Deotare P., Loncar M., Diamond nonlinear photonics, Nature Photonics 2014, 8, 369-374.

  • [36] Coillet A., Henriet R., Huy K. P., Jacquot M., Furfaro L., Balakireva I., Larger L., Chembo Y. K., Microwave Photonics Systems Based on Whispering-gallery-mode Resonators, J. Vis. Exp. 2013, 78, e50423.

  • [37] Papp S. B., Del’Haye P., Diddams S. A., Mechanical Control of a Microrod-Resonator Optical Frequency Comb, Phys. Rev. X. 2013, 3, 031003.

  • [38] Maleki L., The optoelectronic oscillator, Nature Photonics 2011, 5, 728.

  • [39] Dumeige Y., Trebaol S., Ghisa L., Nguyen T. K. N., Tavernier H., Féron P., Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers, J. Opt. Soc. Am. B 2008, 25, 2073.

  • [40] Coillet A., Henriet R., Salzenstein P., Phan Huy K., Larger L., Chembo Y. K., Time-domain Dynamics and Stability Analysis of Optoelectronic Oscillators based on Whispering-Gallery Mode Resonators, IEEE J. Sel. Top. Quantum Electron. 2013, 19, 6000112.

  • [41] Saleh K., Lin G., Chembo Y. K., Effect of Laser Coupling and Active Stabilization on the Phase Noise Performance of Optoelectronic Microwave Oscillators Based on Whispering-Gallery- Mode Resonators, IEEE Phot. J. 2015, 7, 5500111.

  • [42] Saleh K., Henriet R., Diallo S., Lin G.,Martinenghi R., Balakireva I. V., Salzenstein P., Coillet A., Chembo Y. K., Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators, Opt. Express 2014, 22, 32158-32173

  • [43] Agrawal G. P., Nonlinear Fiber Optics, Fifth Edition, Academic Press (2013).

  • [44] Haelterman M., Trillo S., Wabnitz S., Additive-modulationinstability ring laser in the normal dispersion regime of a fiber Opt. Lett. 1992, 17, 745.

  • [45] Leo F., Coen S., Kockaert P., Gorza S.-P., Emplit P., Haelterman M., Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer, Nature Photonics 2010 4, 471.

  • [46] Chembo Y. K., Quantum Dynamics of Kerr Optical Frequency Combs below and above Threshold: Spontaneous Four- Wave-Mixing, Entanglement and Squeezed States of Light, arXiv:1412.5700v2 [quant-ph], 2015.

  • [47] Hansson T., Modotto D., Wabnitz S., Dynamics of the modulational instability in microresonator frequency combs, Phys. Rev. A 2013, 88, 023819.

  • [48] Turing A. M., The Chemical Basis of Morphogenesis, Phil. Trans. of the R. Soc. Ser. B 1952, 237, 37.

  • [49] Coillet A. and Chembo Y. K., On the robustness of phase locking in Kerr optical frequency combs, Opt. Lett. 2014, 39, 1529.

  • [50] Lin G., Saleh K., Henriet R., Diallo S., Martinenghi R., Coillet A., Chembo Y. K., Wide-range tunability, thermal locking, and mode-crossing effects in Kerr optical frequency combs, Opt. Eng. 2014, 53, 122602.

  • [51] Herr T., Brasch V., Jost J. D., Wang C. Y., Kondratiev N. M., Gorodetsky M. L., Kippenberg T. J., Temporal solitons in optical microresonators, Nature Photon. 2014, 8, 145.

  • [52] Taheri H., Eftekhar A. A., Wiesenfeld K., Adibi A., Soliton Formation in Whispering-Gallery-Mode Resonators via Input Phase Modulation, IEEE Phot. J. 2015, 7, 2200309.

  • [53] Lobanov V. E., Lihachev G., Kippenberg T. J., Gorodetsky M. L., Frequency combs and platicons in optical microresonators with normal GVD, Opt. Express 2015, 23, 7713.

  • [54] Matsko A. B., Liang W., Savchenkov A. A., Maleki L., Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators, Opt. Lett. 2013, 38, 525.

  • [55] A. Coillet and Y. K. Chembo, Routes to spatiotemporal chaos in Kerr optical frequency combs, Chaos 24, 013313 (2014).

  • [56] Coillet A., Dudley J., Genty G., Larger L., Chembo Y. K., Optical Rogue Waves in Whispering-Gallery-Mode Resonators, Phys. Rev. A 2014, 89, 013835.

  • [57] Akhmediev N., Pelinovsky E., Editors, Rogue waves - Towards a unifying concept, Special issue of the Eur. Phys. J. Spe. Top., 2010.

  • [58] Akhmediev N., Dudley J. M., Solli D. R., Turitsyn S. K., Recent progress in investigating optical rogue waves, J. Opt. 2013, 15, 060201.

  • [59] Pfeifle J., Coillet A., Henriet R., Saleh K., Schindler P., Weimann C., Freude W., Balakireva I. V., Larger L., Koos C., Chembo Y. K., Optimally Coherent Kerr Combs Generatedwith Crystalline Whispering Gallery Mode Resonators for Ultrahigh Capacity Fiber Communications, Phys. Rev. Lett. 2015, 114, 093902.

  • [60] Li J., Lee H., Chen T., Vahala K. J., Low-Pump-Power, Low-Phase- Noise, and Microwave to Millimeter-Wave Repetition Rate Operation in Microcombs, Phys. Rev. Lett. 2012, 109, 233901.

  • [61] Savchenkov A. A., Eliyahu D., Liang W., Ilchenko V. S., Byrd J., Matsko A. B., Seidel D., Maleki L., Stabilization of a Kerr frequency comb oscillator, Opt. Lett. 2013, 38, 2636.

  • [62] Del’Haye P., Papp S. B., Diddams S. A., Hybrid Electro-Optically Modulated Microcombs, Phys. Rev. Lett. 2012, 109, 263901.

  • [63] Papp S. B., Beha K., Del’Haye P., Quinlan F., Lee H., Vahala K. J., Diddams S. A., Microresonator frequency comb optical clock, Optica 2014, 1, 10.

  • [64] Del’Haye P., Herr T., Gavartin E., Gorodetsky M.L., Holzwarth R., Kippenberg T.J., Octave Spanning Tunable Frequency Comb from a Microresonator, Phys. Rev. Lett. 2011, 107, 63901.

  • [65] Okawachi Y., Saha K., Levy J. S., Wen Y. H., Lipson M.,Gaeta A. L., Octave-spanning frequency comb generation in a silicon nitride chip, Opt. Lett. 2011, 36, 3398.

  • [66] Liang W., Savchenkov A. A., Xie Z., McMillan J. F., Burkhart J., Ilchenko V. S., Wong C. W., Matsko A. B., Maleki L., Miniature multioctave light source based on a monolithic microcavity, Optica 2015, 2, 40.

  • [67] Matsko A. B., Maleki L., Noise conversion in Kerr comb RF photonic oscillators, J. Opt. Soc. Am. B 2015, 32, 232.

  • [68] Wang P.-H., Ferdous F., Miao H.,Wang J., Leaird D. E., Srinivasan K., Chen L., Aksyuk V., Weiner A. M., Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs, Opt. Express 2012, 20, 29284.

  • [69] Levy J., Saha K., Okawachi Y., Foster M., Gaeta A., Lipson M., High-performance silicon-nitride-based multiple-wavelength source, IEEE Phot. Tech. Lett. 2012, 24, 1375.

  • [70] T. W. Hansch, Nobel Lecture: Passion for precision, Rev. Mod. Phys. 2006, 78, 1297.

  • [71] Schliesser A., Picqué N., Hänsch T. W., Mid-infrared frequency combs, Nature Photonics 2012, 6, 440.

  • [72] Savchenkov A. A., Matsko A. B., Liang W., Ilchenko V. S., Seidel D., Maleki L., Kerr combs with selectable central frequency, Nature Photonics 2011, 5, 293.

  • [73] Savchenkov A. A., Ilchenko V. S., Di Teodoro F., Belden P. M., LotshawW. T.,Matsko A. B.,Maleki L., Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers, Opt. Lett 2015, 40, 3468.

  • [74] Wang C. Y., Herr T., Del’Haye P., Schliesser A., Hofer J., Holzwarth R., Hänsch T. W., Picqué N., Kippenberg, T. J., Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators, Nature Communications 2013, 4, 1345.

  • [75] Griflth A. G., Lau R. K. W., Cardenas J., Okawachi Y., Mohanty A. , Fain R., Lee Y. H. D., Yu M., Phare C. T., Poitras C. B., Gaeta A. L., Lipson M., Silicon-chip mid-infrared frequency comb generation, Nature Communications 2015, 6, 6299.

  • [76] Lecaplain C., Javerzac-Galy C., Lucas E., Jost J. D., Kippenberg T. J., Quantum cascade laser Kerr frequency comb, arXiv:1506.00626, 2015.

  • [77] Lin G., Chembo Y. K., On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range, Opt. Express 2015, 23, 1594-1604.

  • [78] Sharping J. E., Lee K. F., Foster M. A., Turner A. C., Schmidt B. S., Lipson M., Gaeta A. L., Kumar P., Generation of correlated photons in nanoscale siliconwaveguides, Optics Express 2006, 14, 12388.

  • [79] Clemmen S., Phan-Huy K., Bogaerts W., Baets R. G., Emplit Ph., Massar S., Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators, Opt. Express 2009, 17, 16558.

  • [80] Helt L. G., Yang Z., Liscidini M., Sipe J. E., Spontaneous fourwave mixing in microring resonators, Opt. Lett. 2010, 35, 3006.

  • [81] Chen J., Levine Z. H., Fan J., Migdall A. L., Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator microresonator, Opt. Express 2011, 19, 1470.

  • [82] Azzini S., Grassani D., Strain M. J., Sorel M., Helt L. G., Sipe J. E., Liscidini M., Galli M., Bajoni D., Ultra-low power generation of twin photons in a compact silicon ring resonator, Opt. Express 2012, 20, 23100.

  • [83] Helt L. G., Liscidini M., Sipe J. E., How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices, J. Opt. Soc. Am. 2012, 29, 2199.

  • [84] Azzini S., Grassani D., Galli M., Andreani L. C., Sorel M., Strain M. J., Helt L. G., Sipe J. E., Liscidini M., Bajoni D., From classical four-wave mixing to parametric fluorescence in silicon microring resonators, Opt. Express 2012, 37, 3807.

  • [85] Camacho R. M., Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators, Opt. Express 2012, 20, 21977.

  • [86] Matsuda N., Le Jeannic H., Fukuda H., Tsuchizawa T., Munro W. J., Shimizu K., Yamada K., Tokura Y., Takesue H., A monolithically integrated polarization entangled photon pair source on a silicon chip, Sci. Rep. 2012, 2, 817.

  • [87] Engin E., Bonneau D., Natarajan C. M., Clark A. S., Tanner M. G., Hadfield R. H., Dorenbos S. N., Zwiller V., Ohira K., Suzuki N., Yoshida H., Iizuka N., Ezaki M., O’Brien J. L., Thompson M. G., Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement, Opt. Express 2013, 21, 27826.

  • [88] Reimer C., Caspani L., Clerici M., Ferrera M., Kues M., Peccianti M., Pasquazi A., Razzari L., Little B. E., Chu S. T., Moss D. J., Morandotti R., Integrated frequency comb source of heralded single photons, Opt. Express 2014, 22, 6535.

  • [89] Vernon Z., Sipe J. E., Spontaneous four-wave mixing in lossy microring resonators, arXiv:1502.05900 [quant-ph], 2015.

  • [90] Grassani D., Azzini S., Liscidini M., Galli M., Strain M. J., Sorel M., Sipe J. E., Bajoni D., Micrometer-scale integrated silicon source of time-energy entangled photons, Optica 2015, 2, 88.

  • [91] Fabre C., Squeezed states of light, Phys. Rep. 1992, 19, 215.

  • [92] Sanders B. C., Review of coherent entangled states, J. Phys. A: Math. Theor. 2012, 45, 244002.

  • [93] Lugiato L. A., Castelli F., Quantum Noise Reduction in a Spatial Dissipative Structure, Phys. Rev. Lett., 1992, 68, 3284.

  • [94] Dutt A., Luke K.,Manipatruni S., Gaeta A. L., Nussenzveig P., Lipson M., On-Chip Optical Squeezing, Phys. Rev. Applied 2015, 3, 044005.

  • [95] Haragus M., Iooss G., Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Springer, 2010.

  • [96] Miyaji T., Ohnishi I., Tsutsumi Y., Bifurcation analysis to the Lugiato-Lefever equation in one space dimension, Physica D 2010, 239, 2066.

  • [97] Kozyreff G., Localized Turing patterns in nonlinear optical cavities, Physica D 2012, 241, 936.

  • [98] Herr T., Hartinger K., Riemensberger J., Wang C. Y., Gavartin E., Holzwarth R., Gorodetsky M. L., Kippenberg T. J., Universal formation dynamics and noise of Kerr-frequency combs in microresonators Nature Photonics, 2012, 6, 480.

  • [99] Del’Haye P., Beha K., Papp S. B., Diddams S. A., Self-Injection Locking and Phase-Locked States in Microresonator-Based Optical Frequency Combs, Phys. Rev. Lett. 2014, 112, 043905.

  • [100] Del’Haye P., Coillet A., Loh W., Beha K., Papp S. B., Diddams S. A., Phase steps and resonator detuning measurements in microresonator frequency combs, Nature Communications 2015, 6, 5668.

  • [101] Bao C., Zhang L., Matsko A., Nonlinear conversion eflciency in Kerr frequency comb generation, Opt. Lett. 2014, 39, 6126.

  • [102] Chembo Y. K., Grudinin I. S., Yu N., Spatiotemporal dynamics of Kerr-Raman optical frequency combs, Phys. Rev. A 2015, 92, 043818.

  • [103] Grudinin I. S., Yu N., Dispersion engineering of crystalline resonators via microstructuring, Optica 2015, 2, 221.

  • [104] Lin G., Diallo S., Saleh K., Martinenghi R., Beugnot J.-C., Sylvestre T., Chembo Y. K., Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators, Appl. Phys. Lett. 2014, 105, 231103.

  • [105] Diallo S., Lin G., Chembo Y. K., Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators, Opt. Lett. 2015, 40, 3834.

  • [106] Lin G., Martinenghi R., Diallo S., Saleh K., Coillet A., Chembo Y. K., Spectro-temporal dynamics of Kerr combs with parametric seeding Appl. Opt. 2015, 54, 2407.

  • [107] Matsko A. B., Savchenkov A. A., Yu N., Maleki L., Whisperinggallery- mode resonators as frequency references. I. Fundamental limitations, J. Opt. Soc. Am. B 2007, 24, 1324.

  • [108] Savchenkov A. A.,Matsko A. B., Ilchenko V. S., Yu N.,Maleki L., Whispering-gallery-mode resonators as frequency references. II. Stabilization, J. Opt. Soc. Am. B 2007, 24, 2988.

OPEN ACCESS

Journal + Issues

Nanophotonics covers recent international research results, specific developments in the field and novel applications. Nanophotonics focuses on the interaction of photons with nano-structures, such as carbon nanotubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue and DNA. It belongs to the top journals in the field.

Search