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Abstract: Plasmonic nanoantennas have revolutionized 
the way we study and modulate light�matter interaction. 
Due to nanofabrication limitations, dimer-type nanoan-
tennas always exhibit some degree of asymmetry, which 
is desirable in some cases. For instance, in sensing appli-
cations, asymmetry is sometimes induced by design in 
plasmonic nanoantennas to favor higher order nonra-
diative modes with sharp Fano line shapes. Regardless 
of the actual origin of the asymmetry, unintentional or 
intentional, an analytical frame that can deal with it in a 
seamless manner would be beneficial. We resort to con-
formal mapping for this task and we track the influence 
of the degree of asymmetry of the circular sectors compos-
ing gold bowtie nanoantennas on the nonradiative Purcell 
enhancement of a nearby nanoemitter. This manuscript 
reviews the contributions of conformal mapping to plas-
monic nanoantennas and illustrates the advantages of 
the elegant analytical solution provided by conformal 
mapping to grasp physical insights, which can serve as a 
springboard for new plasmonic asymmetric nanoantenna 
designs.
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1  �Introduction

Nanoantennas and nanocavities supporting plasmonic 
modes (collective oscillation of conduction electrons 
induced by an electromagnetic wave) with extraordi-
nary small mode volumes are ideal systems for studying 
light�matter interaction and provide a natural platform 
for sensing and trapping [1]. Some of the latest achieve-
ments in the field include single-molecule fluorescence 
[2] and strong-coupling at room temperature [3], effective 
third-order susceptibility of 3.5���103 nm2/V2 [4], second 
harmonic generation conversion efficiency of 0.075% [5], 
probing vibrations of individual molecular bonds [6] and 
the nonlocal response of the graphene electron liquid [7], 
spontaneous emissions that are faster than stimulated 
emission [8], ultrafast modulation in a single metal layer 
[9] and low-loss plasmon-assisted electro-optic modula-
tion [10], among others.

The current standard for designing such nanostruc-
tures are time-consuming computational tools whose 
limitations are not always understood by the user. In 
many cases, such simulations do not provide a physical 
understanding or intuition of the scenario that could be 
exploited for future nanosystems. In fact, such physical 
intuition is highly regarded to unveil hidden symmetries 
[11�13] and understand the consequences of inducing 
asymmetries in the electrodynamic response of plasmonic 
nanostructures [14�17]. This problem can be alleviated by 
using analytical tools, such as transformation optics [18, 
19] or its two-dimensional (2D) variant, conformal trans-
formation [19, 20], which we have exploited over the last 
few years [13, 21�27].

Conformal mapping is an important technique 
used in complex analysis, which enables solving many 
boundary problems found in physics and engineering 
disciplines. The most classical example of conformal 
mapping beyond pure mathematics is, perhaps, the 
first successful airfoil theory developed by Joukowski/
Zhukovsky at the beginning of the 20th century [28]. 
In the field of electromagnetics, this analytical tool has 

*Corresponding author: Miguel Navarro-Cía, School of Physics 
and�Astronomy, University of Birmingham, Birmingham B15 2TT, 
United Kingdom, e-mail: m.navarro-cia@bham.ac.uk.  
https://orcid.org/0000-0003-0256-6465
Victor Pacheco-Peæa: School of Engineering, Newcastle University, 
Merz Court, Newcastle Upon Tyne NE1 7RU, United Kingdom.  
https://orcid.org/0000-0003-2373-7796
Rœben A. Alves: School of Physics and Astronomy, University 
of�Birmingham, Birmingham B15 2TT, United Kingdom.  
https://orcid.org/0000-0001-7916-1402

 Open Access. ' 2020 Miguel Navarro-Cía et al., published by De Gruyter.  This work is licensed under the Creative Commons Attribution 4.0  
Public License.

�±�†�q�‚�³���‚�å�‚�q�*�·�Ò �³�±�³�±�H �º�f�¶�g�) �²�²�¸�¸�n�²�²�¹�¸



been used extensively to analyze the transmission lines 
found nowadays in radio-frequency and microwave 
integrated circuits [29]. Its application for plasmonics 
nanoantennas has been championed just recently by 
Pendry et� al. [19, 30�34], who have also extended it to 
graphene gratings [12, 35]. Other contributors to the field 
of transformation optics nanoantennas include Werner 
et�al. [36], Zayats et�al. [37, 38] and ourselves [13, 21�27]. 
While other groups have dealt with cylindrical [30�32, 
36, 39�41] and spherical dimers [42, 43], crescent-shaped 
nanostructures [30, 36, 44, 45], cylindrical nanocavities 
and nanoprotrusion [33, 34], nanoparticle-on-a-mirror 
[42] and core-shell nanoparticles [37, 38], our efforts have 
been devoted instead to understand the interaction of a 
quantum emitter nearby bowtie nanostructures [13, 25�
27] and the prospect of bowtie-modified nanostructures 
(i.e. logperiodic nanoantennas) for higher harmonic gen-
eration [21, 22] and spectroscopy [23, 24]. The motivation 
to work with such topology stems from the fact that the 
plasmonic community holds it in high regard given its 
broadband response and high field concentration at the 
gap [2, 46�49].

In this manuscript, we review the conformal mapping 
that enables us to transpose the complicated bowtie sce-
nario to the simpler periodic metal-insulator scenario 
(Figure 1). We also report new results to address the fol-
lowing questions: (1) does the surface plasmon reflection 
phase have any asymptotic limit with the nanoantenna 
size? and (2) what is the effect of asymmetric circular 

sectors on the overall response of the bowtie excited by a 
nearby nanoemitter?

2  �Analytical framework, results and 
discussion

2.1  �Conformal mapping: basics

A conformal map is an analytic transformation of the form 
z����f(z), where z����x����iy�, which preserves oriented angles 
locally. Hence, the tangential component of the electric 
field E|| and the normal component of the displacement 
field, D� are conserved under the transformation, imply-
ing that the material in the original and transformed 
spaces are identical. That is,

	
1( ) ( ( )) ( ).z f z z� � ��� �� � � � (1)

Furthermore, if a given function �(z) is a solution of 
Laplace�s equation for the z-plane, representing the quasi-
static potential in such plane, then ��(z�)����(f�1(z�)) (the 
quasi-static potential in z�-plane) will be the Laplace solu-
tion for the z�-plane.

Let us now imagine that the geometry under study is a 
2D bowtie geometry [i.e. a three-dimensional (3D) bowtie 
geometry with out-of-plane invariance] with a nanoe-
mitter at (x�, y�)���(1�nm, 0�nm) modelled as a line dipole 
(Figure 1A). By using the natural logarithm mapping

	 ( ),z ln z� � � (2)

such geometry is transformed into the periodic metal-
insulator geometry shown in Figure 1B. In particular, 
the nanoemitter at (x�, y�)���(1�nm, 0�nm) is transposed to 
(x,�y)���(0, 2�m), where m is an integer. If the nanoemitter 
were on-center in the original frame, it would be trans-
posed to x�����. The fact that the bowtie has a gap at its 
center prevents the metal-insulator geometry to extend to 
�� in the x-direction.

If we restrict the bowtie to be at least one order of 
magnitude smaller than the wavelength, we can invoke 
the quasi-static approximation for the analytical analysis, 
whereby the radiation losses are neglected and the mag-
netic and electric fields are decoupled; the latter field can 
then be expressed via an electrostatic potential satisfying 
the Laplace equation. In this situation, the power dissipa-
tions in the original, ( , )

abs ,x yP � �  and transformed, ( , )
abs ,x yP  frames 

are identical. Hence, the former can be calculated using 
the latter, whereby the electric field is evaluated at the 
dipole position as

Figure 1:�Transformed and original space for the nanoantennas 
under study.
The schematic representation of the gold asymmetric bowtie 
nanoantenna (A) along with its corresponding transformed 
periodic metal-insulator geometry (B) after applying the conformal 
mapping shown in the figure in blue. The total length of the bowtie 
l����2(L1����L2�)���g�, where g� is the size of the gap. g����1�nm unless 
otherwise stated and the nanoemitter is located at (x�, y�)���(1�nm, 
0�nm). Notice that both structures are invariant along z� and z for the 
analytical results of this manuscript.
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where Pnr is the nonradiative power emission; � is the 
angular frequency; px and py are the x and y components of 
the dipole moment with magnitude |p|, respectively; and 

1 (0, 2 )S
xE m�  and 1 (0, 2 )S

yE m�  are the x and y components 
of the electric field, respectively, at the position where the 
dipole is in the transformed frame. Normalizing Pnr to the 
power radiated by the line (2D) dipole
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where �0 is the permeability in the free space, results in 
the nonradiative Purcell enhancement given by

	 0/ ,nr nrP P� � � (5)

provided an intrinsic quantum yield of 1 is used for the 
nanoemitter; under such condition, one can map the non-
radiative decay experienced by the nanoemitter with the 
power absorbed by the bowtie nanoantenna [50].

Such nonradiative Purcell enhancement is modulated 
by the coupling between the array of line dipoles and the 
plasmonic eigen-modes of the system [notice the explicit 
field overlap in Eq. (3)] since the latter modes are the only 
effective nonradiative channels of the system. These plas-
monic eigen-modes are nothing but the localised surface 
plasmons resulting from the interference of the surface 
plasmons triggered by line dipoles. These are reflected 
back and forth between the two ends of the periodic metal-
insulator geometry (i.e. standing-wave plasmonic reso-
nances) and have a wavenumber k���(n� � ��)/(L1���L2), 
with n���1, 2, 3, �, and L1���L2 representing the order of the 
standing-wave plasmonic resonance and the total length 
of the periodic metal-insulator cavities, respectively, and 
�� is a reflection phase correction. This will be discussed 
in the following subsection. The reader is referred to 
Figure 1 to see the definition of geometrical parameters. 
The complete mathematical derivation describing this 
underlying mechanism can be found in Section 3.

2.2  �Surface plasmon reflection phase

The surface plasmons acquire a nontrivial phase at both 
ends of the periodic metal-insulator geometry associated 
with the near-field energy storage at these end faces. This 
is included in our model through a semi-empirical phase 
correction ��, which is added to the reflection phase of 
an open boundary (i.e. �) [25]. An analytical solution to 
the surface plasmon reflection phase could be attempted, 
but only under some assumptions, such as ignoring the 

evanescent plasmonic modes [51, 52]. This approximation 
is valid for long enough periodic metal-insulator cavities 
(i.e. large enough bowtie), and results into an asymptotic 
value of the surface plasmon reflection phase at long 
wavelengths where metal has a large negative dielectric 
constant. However, for short periodic metal-insulator cav-
ities, and thus, small bowties as those considered in our 

Figure 2:�Influence of the bowtie nanoantenna�s length (l�).
The analytical (symbols) and numerical (solid lines) results of the 
�nr  for �����20� bowtie nanoantenna of varying length l� and gap 
size g� illuminated by a nanoemitter with vertical (A) and horizontal 
(B) polarizations placed at (x�, y�)���(1�nm, 0�nm). Notice that the 
symbols and solid lines overlap and are largely indistinguishable. 
Phase correction �� as a function of l� for the vertical (C) and 
horizontal nanoemitters (D) for the three gap sizes considered in A 
and B. The cut-off wavelength for the first three localized surface 
plasmon modes with a vertical (E) and horizontal nanoemitter (F) 
when g����1�nm. Notice that the cut-off wavelength for all modes is 
rather stable against g� for the horizontal nanoemitter case.


















