Nonlinear emission from silver-coated 3D hollow nanopillars

L. Ghirardini 1 , M. Malerba 2 , M. Bollani 3 , P. Biagioni 1 , L. Duò 1 , M. Finazzi 1 , F. De Angelis 2 , and M. Celebrano 1
  • 1 Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
  • 2 Nanostructures Department, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
  • 3 CNR-IFN, LNESS-Laboratory, Via Anzani, 42, 22100 Como, Italy


High aspect ratio metal nanostructures have been the subject of a number of studies in the past, due to their pronounced resonances in the infrared that can be exploited to enhance vibrational spectroscopies. In this work, we investigate the nonlinear optical response of both individual and closely-packed assemblies of vertical hollow Ag nanopillars upon excitation with ultrafast laser pulses. In particular, the analysis of their nonlinear emission spectra evidences an intense two photon photoluminescence (TPPL) emission and a neat signature of second harmonic generation (SHG). Given the relatively low background, this pronounced nonlinear emission could be employed as a local probe for analytes trapped at the surface of the nanopillar or flowing through it. For this reason, these nanostructures may become appealing building blocks in multi-purpose devices for nonlinear photonics and sensing.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Novotny L., Hecht B., Principles of Nano-optics, Cambridge University Press, 2006

  • [2] Anger P., Bharadwaj P., Novotny L., Enhancement and Quenching of Single-Molecule Fluorescence, Phys. Rev. Lett., 2006, 96, 113002

  • [3] Kühn S., Håkanson U., Rogobete L., Sandoghdar V., Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna, Phys. Rev. Lett., 2006, 97, 017402

  • [4] Polavarapu L., P´erez-Juste J., Xu Q.-H., Liz-Marzàn L. M., Optical sensing of biological, chemical and ionic.species through aggregation of plasmonic nanoparticles, J. Mater. Chem. C, 2014, 2, 7460–7476

  • [5] Xie C., Hanson L., Cui Y., Cui B., Vertical nanopillars for highly localized fluorescence imaging, doi/10.1073/pnas.1015589108

  • [6] Wang Y.-S., Shao D., Zhang L., Zhang X.-L., Li J., Feng J., Xia H., Huo Q.-S., Dong W.-F., Sun H.-B., Gold nanorods-silica Janus nanoparticles for theranostics, Appl. Phys. Lett., 2015, 106, 173705

  • [7] Zhang W., Saliba M., Stranks S. D., Sun Y., Shi X., Wiesner U., Snaith H. J., Enhancement of Perovskite-Based Solar Cells Employing Core−Shell Metal Nanoparticles, Nano Lett., 2013, 13, 4505−4510

  • [8] Schmidt M., S. Hubner J., Boisen A., Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy, Adv. Mater., 2012, 24, OP11–OP18

  • [9] McPhillips J., Murphy A., Jonsson M. P., Hendren W. R., Atkinson R., Hook F., Zayats A. V., Pollard R. J., High-Performance Biosensing Using Arrays of Plasmonic Nanotubes, ACS Nano, 2010, 4, 2210–2216

  • [10] Malerba M., Alabastri, A., Miele, E., Zilio, P., Patrini, M., Bajoni, D., Messina, G. C., Dipalo, M., Toma, A., Proietti Zaccaria, R., and De Angelis F., 3D vertical nanostructures for enhanced infrared plasmonics, Sci. Rep., 2015, 5, 16436

  • [11] Messina G. C., Dipalo M., La Rocca R., Zilio P., Caprettini V., Proietti Zaccaria R., Toma A., Tantussi F., Berdondini L., De Angelis F., Spatially, Temporally, and Quantitatively Controlled Delivery of Broad Range of Molecules into Selected Cells through Plasmonic Nanotubes, Adv. Mater., 2015, 27, 7145-7149

  • [12] Mesch, M., Metzger, B., Hentschel, M., Giessen, H., Nonlinear plasmonic sensing, Nano Letters, 2016, 16, 3155-3159.

  • [13] Han, F., Guan Z., Tan T S., Xu Q.-H., Size-Dependent Two-Photon Excitation Photoluminescence Enhancement in Coupled Noble-Metal Nanoparticles, ACS Appl. Mater. Interfaces, 2012, 4, 4746−4751

  • [14] Imura, K., Kim, Y. C., Kim, S., Jeongc, D. H., and Okamoto, H., Two-photon imaging of localized optical fields in the vicinity of silver nanowires using a scanning near-field optical microscope, Phys. Chem. Chem. Phys., 2009, 11, 5876–5881

  • [15] Gong, H. M., Xiao, S., Su, X. R., Han, J. B., and Wang, Q. Q., Photochromism and two-photon luminescence of Ag-TiO2 granular composite films activated by near infrared ps/fs pulses, Opt. Express, 2007, 15, 13924- 13929

  • [16] Sachan, R., Ramos, V., Malasi, A., Yadavali, S., Bartley, B., Garcia, H., Duscher, G., Kalyanaraman, R., Oxidation-Resistant Silver Nanostructures for Ultrastable Plasmonic Applications, Adv. Mater., 2013, 25, 2045-2050.

  • [17] Giliberti V., Sakat E., Baldassarre L., Di Gaspare A., Notargiacomo A., Giovine E., Frigerio J., Isella G., Melli M., and Bollani M., et al., Three-dimensional fabrication of free-standing epitaxial semiconductor nanostructures obtained by focused ion beam, Microelectronic Engineering, 2015, 141, 168–172.

  • [18] De Angelis, F., Malerba M., Patrini M., Miele E., Das G., Toma A., Proietti Zaccaria R., Di Fabrizio E., 3D Hollow Nanostructures as Building Blocks for Multifunctional Plasmonics, Nano Lett., 2013, 13, 3553−3558.

  • [19] Marti O., Bielefeldt H., Hecht B., Herminghaus S., Leiderer P. and Mlynek J., Near-field optical measurement of the surface plasmon field, Opt. Comm., 1993, 96, 225-228.

  • [20] Savage K. J., Hawkeye M. M., Esteban R., Borisov A. G., Aizpurua J., and Baumberg J. J., Revealing the quantum regime in tunnelling plasmonics, Nature, 2014, 491, 574-577

  • [21] Ciracì, C., Urzhumov, Y., and Smith, D., Far-field analysis of axially symmetric three-dimensional directional cloaks, Opt. Express, 2013, 21, 25–28.

  • [22] Zavelani-Rossi M., Celebrano M., Biagioni P., Polli D., Finazzi M., Duò L., Cerullo G., Labardi M., Allegrini M., Grand J., et al., Near-field second-harmonic generation in single gold nanoparticles, Appl. Phys. Lett., 2008, 92, 093119

  • [23] Celebrano M., Biagioni P, Zavelani-Rossi M, Polli D, Labardi M, Allegrini M, Finazzi M, Duò L, Cerullo G., Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale, Rev. Sci. Instrum., 2009, 80, 033704

  • [24] Inouye Y. and Kawata S., Near-field scanning optical microscope with a metallic probe tip, Opt. Lett., 1994, 19, 159-161

  • [25] Labardi M., Allegrini M., Zavelani-Rossi M., Polli D., Cerullo G., De Silvestri S., and Svelto O., Highly efficient second-harmonic nanosource for near-field optics and microscopy, Opt. Lett., 2004, 29, 62-64

  • [26] Biagioni P., Brida D., Huang J.-S., Kern J., Duò L., Hecht B., Finazzi M., Cerullo G., Dynamics of Four-Photon Photoluminescence in Gold Nanoantennas, Nano Lett., 2012, 12, 2941-2947

  • [27] Finazzi M., Biagioni P., Celebrano M., Duò, L. Selection rules for second harmonic generation in nanoparticles, Phys. Rev. B, 2007, 76, 125414

  • [28] Berthelot J., Bachelier G., Song M., Rai P., Colas des Francs G., Dereux A., Bouhelier A., Silencing and enhancement of secondharmonic generation in optical gap antennas, Opt. Express, 2012, 20, 10498-10508

  • [29] Black L.-J., Wiecha P. R., Wang Y., de Groot C. H., Paillard V., Girard C., Muskens O. L., Arbouet A., Tailoring Second- Harmonic Generation in Single L Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime, ACS Photonics, 2015, 2, 1592−1601.

  • [30] Celebrano M., Wu X., Baselli M., Großmann S., Biagioni P., Locatelli A., De Angelis C., Cerullo G., Osellame R., Hecht B., et al., Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation, Nat. Nanotechnol., 2015, 10, 412-417


Journal + Issues