Optical properties of silver nanocube surfaces obtained by silane immobilization

Virginia Merk 1 , Alexander Nerz 1 , Sebastian Fredrich 1 , Ulrich Gernert 2 , Sören Selve 2  and Janina Kneipp 1
  • 1 Humboldt- Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • 2 Technical University Berlin, ZELMI, Straße des 17. Juni 135, 10623 Berlin, Germany

Abstract

Silver nanocubes were synthesized by the polyol method and immobilized on a surface in a simple approach using an aminopropyltriethoxysilane (APTES). The optical and structural properties of the polyvinylpyrrolidone (PVP) stabilized nanocubes were investigated in solution and on glass surfaces. The SERS enhancement factors at two excitation wavelengths for crystal violet were compared with electric fields arising in different nano¬particle configurations using finite-difference time-domain simulations. They are in agreement with the preferred face-to-face orientation in the nanoaggregates on the surfaces. The facile immobilization enables on-demand preparation and use of the nanocubes in real analytical applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Lee H.K., Lee Y.H., Zhang Q., Phang I.Y., Tan J.M.R., Cui Y. and Ling X.Y., Superhydrophobic Surface-Enhanced Raman Scattering Platform Fabricated by Assembly of Ag Nanocubes for Trace Molecular Sensing, Appl. Mater. Interf., 2013, 5, 11409-11418.

  • [2] Kodiyath R., Malak S.T., Combs Z.A., Koenig T., Mahmoud M.A., El-Sayed M.A. and Tsukruk V.V., Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection, J. Mater. Chem. A, 2013, 1, 2777-2788.

  • [3] Liu X.-L., Liang S., Nan F., Yang Z.-J., Yu X.-F., Zhou L., Hao Z.-H. and Wang Q.-Q., Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS, Nanoscale, 2013, 5, 5368-5374.

  • [4] Sisco P.N. and Murphy C.J., Surface-Coverage Dependence of Surface-Enhanced Raman Scattering from Gold Nanocubes on Self-Assembled Monolayers of Analyte, J. Phys. Chem. A, 2009, 113, 3973-3978.

  • [5] Fievet F., Lagier J.P. and Figlarz M., Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process, MRS Bulletin, 1989, 14, 29-34.

  • [6] Sun Y. and Xia Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 2002, 298, 2176-2179.

  • [7] Wang Y., Zheng Y.Q., Huang C.Z. and Xia Y.N., Synthesis of Ag Nanocubes 18-32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility, J. Am. Chem. Soc., 2013, 135, 1941-1951.

  • [8] Ringe E., McMahon J.M., Sohn K., Cobley C., Xia Y., Huang J., Schatz G.C., Marks L.D. and Van Duyne R.P., Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach, J. Phys. Chem. C, 2010, 114, 12511-12516.

  • [9] McMahon J.M., Wang Y., Sherry L.J., Van Duyne R.P., Marks L.D., Gray S.K. and Schatz G.C., Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes, J. Phys. Chem. C, 2009, 113, 2731-2735.

  • [10] Mahmoud M.A., Tabor C.E. and El-Sayed M.A., Surface- Enhanced Raman Scattering Enhancement by Aggregated Silver Nanocube Monolayers Assembled by the Langmuir−Blodgett Technique at Different Surface Pressures, J. Phys. Chem. C, 2009, 113, 5493-5501.

  • [11] Lee S.Y., Hung L., Lang G.S., Cornett J.E., Mayergoyz I.D. and Rabin O., Dispersion in the SERS Enhancement with Silver Nanocube Dimers, ACS Nano, 2010, 4, 5763-5772.

  • [12] McLellan J.M., Li Z.-Y., Siekkinen A.R. and Xia Y., The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization, Nano Lett., 2007, 7, 1013-1017.

  • [13] McLellan J.M., Siekkinen A., Chen J. and Xia Y., Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes, Chem. Phys. Lett., 2006, 427, 122-126.

  • [14] Fang C., Brodoceanu D., Kraus T. and Voelcker N.H., Templated silver nanocube arrays for single-molecule SERS detection, RSC Advances, 2013, 3, 4288-4293.

  • [15] Joseph V., Gensler M., Seifert S., Gernert U., Rabe J.P. and Kneipp J., Nanoscopic Properties and Application of Mix-and- Match Plasmonic Surfaces for Microscopic SERS, J. Phys. Chem. C, 2012, 116, 6859-6865.

  • [16] Grabar K.C., Freeman R.G., Hommer M.B. and Natan M.J., Preparation and Characterization of Au Colloid Monolayers, Anal. Chem., 1995, 67, 735-743.

  • [17] Chumanov G., Sokolov K., Gregory B.W. and Cotton T.M., Colloidal metal films as a substrate for surface-enhanced spectroscopy, J. Phys. Chem., 1995, 99, 9466-9471.

  • [18] Polwart E., Keir R.L., Davidson C.M., Smit W.E. and Sadler D.A., Novel SERS-Active Optical Fibers Prepared by the Immobilization of Silver Colloidal Particles, Appl. Spec., 2000, 54, 522-527.

  • [19] Cant N.E., Critchley K., Zhang H.-L. and Evans S.D., Surface functionalisation for the self-assembly of nanoparticle/polymer multilayer films, Thin Solid Films, 2003, 426, 31-39.

  • [20] Kudelski A., Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: Do dye molecules adsorb preferentially on highly SERS-active sites?, Chem. Phys. Lett., 2005, 414, 271-275.

  • [21] Johnson P.B. and Christy R.W., Optical Constants of the Noble Metals, Phys. Rev. B, 1972, 6, 4370-4379.

  • [22] Zhou F., Li Z.-Y., Liu Y. and Xia Y., Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles, J. Phys. Chem. C, 2008, 112, 20233-20240.

  • [23] Zhang Q., Li W., Moran C., Zeng J., Chen J., Wen L.-P. and Xia Y., Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30−200 nm and Comparison of Their Optical Properties, J. Am. Chem. Soc., 2010, 132, 11372-11378.

  • [24] Im S.H., Lee Y.T., Wiley B. and Xia Y., Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity, Angew. Chem. Int. Ed., 2005, 44, 2154-2157.

  • [25] Wiley B.J., Im S.H., Li Z.-Y., McLellan J., Siekkinen A. and Xia Y., Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis, J. Phys. Chem. B, 2006, 110, 15666-15675.

  • [26] Grillet N., Manchon D., Bertorelle F., Bonnet C., Broyer M., Cottancin E., Lermé J., Hillenkamp M. and Pellarin M., Plasmon Coupling in Silver Nanocube Dimers: Resonance Splitting Induced by Edge Rounding, ACS Nano, 2011, 5, 9450-9462.

  • [27] Sherry L.J., Chang S.-H., Schatz G.C., Van Duyne R.P., Wiley B.J. and Xia Y., Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes, Nano Lett., 2005, 5, 2034-2038.

  • [28] Bottomley A., Prezgot D., Staff A. and Ianoul A., Fine tuning of plasmonic properties of monolayers of weakly interacting silver nanocubes on thin silicon films, Nanoscale, 2012, 4, 6374-6382.

  • [29] Cañamares M.V., Chenal C., Birke R.L. and Lombardi J.R., DFT, SERS, and Single-Molecule SERS of Crystal Violet, J Phys. Chem. C, 2008, 112, 20295-20300.

  • [30] Osawa M., Matsuda N., Yoshii K. and Uchida I., Charge- Transfer Resonance Raman Process in Surface-Enhanced Raman-Scattering from P-Aminothiophenol Adsorbed on Silver - Herzberg-Teller Contribution, J. Phys. Chem., 1994, 98, 12702-12707.

  • [31] Huang Y.-F., Wu D.-Y., Zhu H.-P., Zhao L.-B., Liu G.-K., Ren B. and Tian Z.-Q., Surface-enhanced Raman spectroscopic study of p-aminothiophenol, Phys. Chem. Chem. Phys., 2012, 14, 8485-8497.

  • [32] Moran C.H., Rycenga M., Zhang Q. and Xia Y.N., Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering, J. Phys. Chem. C, 2011, 115, 21852-21857.

  • [33] Joseph V., Matschulat A., Polte J., Rolf S., Emmerling F. and Kneipp J., SERS enhancement of gold nanospheres of defined size, J. Raman Spec., 2011, 42, 1736-1742.

  • [34] Camargo P.H.C., Au L., Rycenga M., Li W. and Xia Y., Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes, Chem. Phys. Lett., 2010, 484, 304-308.

  • [35] Hao E. and Schatz G.C., Electromagnetic fields around silver nanoparticles and dimers, J. Chem. Phys., 2004, 120, 357-366.

OPEN ACCESS

Journal + Issues

Search