Crystal structure of 2,2′-diamino-[1,1′-biphenyl]-4,4′-dicarboxylic acid dihydrate, C14H16N2O6

Alla Dikhtiarenko 1 , Alma I. Olivos Suarez 1 , Alexey Pustovarenko 1 , Santiago García-Granda 2 , and Jorge Gascon 1
  • 1 Catalysis Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, Delft 2628BL, The Netherlands
  • 2 Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/Julián Clavería, 8, 33006 Oviedo, Spain
Alla Dikhtiarenko, Alma I. Olivos Suarez, Alexey Pustovarenko, Santiago García-Granda and Jorge Gascon

Abstract

C14H16N2O6, triclinic, P1̅ (no. 2), a = 10.0254(5) Å, b = 11.2726(6) Å, c = 13.4494(7) Å, α = 111.535(2)°, β = 92.068(2)°, γ = 102.644(2)°, V = 1368.16(13) Å3, Z = 4, Rgt(F) = 0.047, wRref(F2) = 0.133, T = 150 K.

article image

The crystal structure is shown in the figure. Tables 13 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Yellow, tetrahedral, size 0.10×0.20×0.30 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.18 cm−1
Diffractometer, scan mode:Xcalibur, Ruby, Gemini, ω scans
2θmax:61.2°
N(hkl)measured, N(hkl)unique:73950, 8404
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 6147
N(param)refined:477
Programs:XABS2 [6], CrysAlis [7], SIR92 [8], SHELX [9], Diamond [10], WinGX [11], enCIFer [12]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomSitexyzUiso
H(1A)2i0.590(2)0.196(2)−0.103(2)0.025(4)
H(1B)2i0.671(2)0.235(2)0.006(2)0.031(5)
H(2A)2i0.429(2)0.097(2)0.074(1)0.048(6)
H(2B)2i0.393(2)0.067(3)0.165(2)0.062(7)
H(2C)2i0.496(2)0.003(2)0.094(2)0.037(5)
H(3A)2i0.962(2)0.307(2)0.544(2)0.055(7)
H(3)2i0.40300.2839−0.12130.019
H(4)2i0.27690.51900.14310.022
H(6)2i0.42550.47140.24980.022
H(10)2i0.71310.50280.28050.021
H(11)2i0.64500.07700.26760.021
H(12)2i0.85190.45820.39590.020
H(3B)2i0.748(2)1.005(2)0.727(2)0.034(5)
H(3C)2i0.842(2)1.051(2)0.829(2)0.034(5)
H(4A)2i0.859(2)1.023(2)0.525(2)0.048(6)
H(4B)2i0.897(2)0.956(2)0.595(2)0.040(6)
H(5)2i1.074(2)0.559(2)0.893(2)0.050(6)
H(8)2i0.214(3)0.739(2)0.264(2)0.055(7)
H(17)2i0.88590.53070.67210.022
H(18)2i0.94680.90600.88090.022
H(20)2i0.74950.57230.55330.021
H(23)2i0.50500.63790.56540.022
H(25)2i0.64600.94340.41210.024
H(26)2i0.35360.65510.44130.023
H(9WA)2i0.030(3)0.700(2)0.157(2)0.045(6)
H(9WB)2i0.136(2)0.660(2)0.099(2)0.050(7)
H(10A)2i0.096(3)0.306(3)0.687(2)0.056(7)
H(10B)2i0.101(3)0.199(3)0.584(2)0.080(9)
H(11A)2i0.158(3)0.166(3)0.805(2)0.074(8)
H(11B)2i0.144(3)0.023(3)0.732(2)0.074(8)
H(12A)2i0.231(3)0.057(3)0.910(2)0.067(8)
H(12B)2i0.215(3)−0.059(3)0.950(2)0.078(9)
Table 3

Atomic displacement parameters (Å2).

AtomSitexyzU11U22U33U12U13U23
C(1)2i0.2193(1)0.4262(1)−0.0703(1)0.0149(6)0.0169(6)0.0217(6)0.0029(5)−0.0032(5)0.0101(5)
C(2)2i0.3226(1)0.4029(1)−0.0002(1)0.0138(6)0.0151(6)0.0201(6)0.0029(4)−0.0023(5)0.0093(5)
C(3)2i0.4079(1)0.3212(1)−0.0467(1)0.0158(6)0.0164(6)0.0153(6)0.0029(5)−0.0023(5)0.0075(5)
C(4)2i0.3311(1)0.4615(1)0.1116(1)0.0189(6)0.0197(6)0.0207(6)0.0099(5)0.0011(5)0.0088(5)
C(5)2i0.5007(1)0.2943(1)0.0171(1)0.0133(6)0.0144(6)0.0190(6)0.0040(4)0.0004(5)0.0078(5)
C(6)2i0.4208(1)0.4332(1)0.1752(1)0.0208(6)0.0212(6)0.0162(6)0.0090(5)0.0003(5)0.0080(5)
C(7)2i0.5043(1)0.3484(1)0.1298(1)0.0140(6)0.0168(6)0.0187(6)0.0044(5)−0.0014(5)0.0092(5)
C(8)2i0.5947(1)0.3172(1)0.2022(1)0.0154(6)0.0189(6)0.0150(6)0.0077(5)0.0015(5)0.0085(5)
C(9)2i0.5761(1)0.1902(1)0.2014(1)0.0153(6)0.0170(6)0.0163(6)0.0053(5)−0.0008(5)0.0066(5)
C(10)2i0.6993(1)0.4170(1)0.2772(1)0.0177(6)0.0173(6)0.0194(6)0.0054(5)0.0011(5)0.0099(5)
C(11)2i0.6589(1)0.1625(1)0.2702(1)0.0183(6)0.0171(6)0.0201(6)0.0062(5)−0.0006(5)0.0099(5)
C(12)2i0.7827(1)0.3906(1)0.3467(1)0.0145(6)0.0189(6)0.0170(6)0.0038(5)0.0003(5)0.0080(5)
C(13)2i0.7629(1)0.2628(1)0.3430(1)0.0158(6)0.0199(6)0.0158(6)0.0070(5)0.0014(5)0.0093(5)
C(14)2i0.8490(1)0.2311(1)0.4178(1)0.0149(6)0.0201(6)0.0178(6)0.0038(5)−0.0012(5)0.0095(5)
N(1)2i0.5840(1)0.2086(1)−0.0317(1)0.0163(5)0.0205(5)0.0175(5)0.0079(4)0.0004(4)0.0074(4)
N(2)2i0.4649(1)0.0831(1)0.1298(1)0.0209(6)0.0189(6)0.0195(6)0.0060(5)−0.0025(5)0.0069(5)
O(1)2i0.1756(1)0.5284(1)−0.03006(8)0.0232(5)0.0212(5)0.0246(5)0.0116(4)−0.0032(4)0.0096(4)
O(2)2i0.1790(1)0.3419(1)−0.16484(8)0.0278(6)0.0214(5)0.0226(5)0.0073(4)−0.0110(4)0.0064(4)
O(3)2i0.9150(1)0.3343(1)0.50236(8)0.0232(5)0.0220(5)0.0185(5)0.0052(4)−0.0055(4)0.0083(4)
O(4)2i0.8550(1)0.1185(1)0.40230(9)0.0317(6)0.0203(5)0.0262(5)0.0079(4)−0.0085(4)0.0106(4)
C(15)2i1.0277(1)0.6921(1)0.8622(1)0.0151(6)0.0208(6)0.0230(6)0.0057(5)0.0001(5)0.0123(5)
C(16)2i0.9326(1)0.7156(1)0.7874(1)0.0134(6)0.0203(6)0.0212(6)0.0050(5)0.0007(5)0.0127(5)
C(17)2i0.8712(1)0.6143(1)0.6897(1)0.0172(6)0.0173(6)0.0227(6)0.0073(5)0.0010(5)0.0097(5)
C(18)2i0.9061(1)0.8389(1)0.8153(1)0.0175(6)0.0178(6)0.0195(6)0.0039(5)−0.0026(5)0.0074(5)
C(19)2i0.8187(1)0.8627(1)0.7458(1)0.0152(6)0.0165(6)0.0214(6)0.0052(5)0.0003(5)0.0089(5)
C(20)2i0.7883(1)0.6393(1)0.6194(1)0.0178(6)0.0183(6)0.0175(6)0.0052(5)−0.0006(5)0.0074(5)
C(21)2i0.7610(1)0.7631(1)0.6451(1)0.0126(6)0.0184(6)0.0199(6)0.0043(5)0.0002(5)0.0112(5)
C(22)2i0.6671(1)0.7813(1)0.5667(1)0.0158(6)0.0179(6)0.0174(6)0.0054(5)0.0002(5)0.0087(5)
C(23)2i0.5334(1)0.7000(1)0.5353(1)0.0173(6)0.0206(6)0.0187(6)0.0033(5)0.0007(5)0.0115(5)
C(24)2i0.7107(1)0.8727(1)0.5181(1)0.0141(6)0.0206(6)0.0233(7)0.0042(5)−0.0006(5)0.0125(5)
C(25)2i0.6184(1)0.8822(1)0.4432(1)0.0177(6)0.0227(7)0.0238(7)0.0050(5)0.0006(5)0.0148(5)
C(26)2i0.4425(1)0.7095(1)0.4606(1)0.0148(6)0.0224(6)0.0194(6)0.0030(5)−0.0009(5)0.0094(5)
C(27)2i0.4855(1)0.8014(1)0.4144(1)0.0171(6)0.0209(6)0.0174(6)0.0072(5)0.0007(5)0.0084(5)
C(28)2i0.3918(1)0.8121(1)0.3318(1)0.0190(6)0.0219(6)0.0183(6)0.0068(5)−0.0005(5)0.0078(5)
N(3)2i0.7786(1)0.9830(1)0.7817(1)0.0254(6)0.0167(6)0.0265(6)0.0075(5)−0.0034(5)0.0083(5)
N(4)2i0.8477(1)0.9447(1)0.5355(1)0.0167(6)0.0316(7)0.0413(8)−0.0015(5)−0.0063(5)0.0262(6)
O(5)2i1.0122(1)0.5671(1)0.84319(9)0.0216(5)0.0209(5)0.0305(6)0.0058(4)−0.0056(4)0.0146(4)
O(6)2i1.1121(1)0.7807(1)0.93305(9)0.0271(6)0.0242(5)0.0327(6)0.0030(4)−0.0117(4)0.0137(5)
O(7)2i0.4297(1)0.8765(1)0.27761(9)0.0269(6)0.0334(6)0.0272(6)0.0043(5)−0.0048(4)0.0192(5)
O(8)2i0.2642(1)0.7431(1)0.32201(9)0.0173(5)0.0431(7)0.0295(6)0.0023(5)−0.0064(4)0.0221(5)
O(9W)2i0.1158(1)0.7216(1)0.15266(9)0.0208(5)0.0237(5)0.0226(5)0.0036(4)−0.0052(4)0.0074(4)
O(10W)2i0.0556(1)0.2622(2)0.6247(1)0.0436(8)0.0531(8)0.0213(6)0.0257(7)−0.0073(5)0.0108(6)
O(11W)2i0.1301(2)0.0794(1)0.8041(1)0.0516(8)0.0234(6)0.0401(7)0.0066(6)−0.0029(6)0.0117(5)
O(12W)2i0.2773(1)0.0250(1)0.9551(1)0.0352(6)0.0238(6)0.0328(6)−0.0002(5)−0.0120(5)0.0109(5)

Source of material

2,2′-Dinitrophenyl-4,4′-dicarboxylic acid dimethyl ester was reduced in an ethanolic solution with 5.8 g of SnCl2 · H2O and 3 mL of concentrated HCl. After partial evaporation of the solvent, the 2,2′-diamino-[1,1′-biphenyl]-4,4′-dicarboxylic acid dimethyl ester was recrystallized from hexane. The final product was obtained after deprotection of the ester with KOH in THF. Yielding (56%) a light-yellow solid. Crystals for X-ray diffraction measurements were grown in TMOS gel media containing 0.37 mmol of 2,2′-diamino-[1,1′-biphenyl]-4,4′-dicarboxylic acid, which previously has been neutralized with LiOH, and under-layered with 0.01M HCl. Yellow rectangular shaped crystals of title compound were formed in the gel phase after two weeks.

Experimental details

Hydrogen atoms belonging to carboxylic, amino- groups and water molecules were taken from a ΔF map. All aromatic and methyl hydrogen atoms were placed in calculated position and then refined with riding model with C—H lengths of 0.93 Å and 0.96 Å (Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl), respectively.

Discussion

In recent years, research on coordination polymers and metal-organic frameworks has made considerable progress. These microporous crystalline materials exhibit intriguing properties, such as molecular adsorption, magnetism and luminescence [1, 2]. Non-covalent intermolecular interactions, mainly hydrogen bonding and aromatic interactions of aromatic carboxylates play a key role in the crystal packing of such coordination polymers [3, 4]. Although carboxylic linkers are most commonly used to build up metal-organic frameworks [5], the crystal structures of these carboxylic acids are rarely reported. Recently, we crystallize the title compound using TMOS gel media.

The asymmetric unit of the title compound (Figure) contains two 2,2′-diamino-[1,1′-biphenyl]-4,4′-dicarboxylic acid and four water molecules. One of the two independent acid molecules is found to be in its zwitterionic form (COO/NH3+) whereas the other is neutral. Due to steric hindrance, in both carboxylic acid molecules, the planes of the aromatic rings in the biphenyl moiety are twisted with respect to each other with a dihedral angle of 63.4° and 60.1° respectively. Notably, the larger angle of repulsion is attributed to the protonation of the amino-group (–NH3+) in one of the carboxylic acid molecules. The cis-conformation of 2,2′-diamino-[1,1′-biphenyl]-4,4′-dicarboxylic acid molecules is established by the weak N2–H2a·N1 and N3–H3b·N4 intramolecular contact with the distance of 3.138(2) Å and 3.299(2) Å. Herein, the planes of all the carboxylic groups are slightly deviated from the planes of the neighbouring aromatic rings and show a dihedral angle of 9.7°, 20.3°, 17.8° and 23.6° for O8–C28–O7, O5–C15–O6, O3–C14–O4 and O1–C1–O2 groups, respectively. The C=O bond lengths of the carboxylic groups C14–O4, C15–O6 and C28–O7 are 1.2236(17) Å, 1.2228(17) Å and 1.2216(17) Å, respectively. The bond lengths of 1.3123(16) Å, 1.3085(17) Å, 1.3170(18) Å for C14–O3, C15–O5 and C28–O8 are as expected. In the O1–C1–O2 carboxylic group the O1–C1 and O2–C1 bond length are nearly equal (1.261 Å and 1.263 Å, respectively), indicating that the double bond in the O1–C1–O2 carboxylic group is delocalized, as a result of deprotonation.

In the crystal, two 2,2′-diamino-[1,1′-biphenyl]-4,4′-dicarboxylic acid and four water molecules are linked by intermolecular O–H⋯N, O–H⋯O and N–H⋯N hydrogen bonds. Two co-planar acid molecules are linked via O5–H5⋯O1 to form a dimer moiety that extends through multiple hydrogen bonds involving the carboxylate, the amino groups and water molecules into a 3D hydrogen bonded framework.

Acknowledgements:

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreement No.335746, CrystEng-MOF-MMM. S. G.-G. thanks to Ministerio de Economía y Competitividad, MAT2013-40950-R, for financial support.

References

  • 1.

    Yaghi O. M.; O'Keeffe M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J.: Reticular synthesis and the design of new materials. Nature 423 (2003) 405–714.

  • 2.

    Rowsell, J.; Yaghi, O. M.: Metal-Organic Frameworks: A new class of porous materials. Micro- and Mesoporous Mater. 73 (2004) 3–14.

  • 3.

    Almeida Paz, F. A.; Klinowski, J.; Vilela, S. M. F.; Tomé, J. P. C.; Cavaleiroc, J. A. S.; Rocha, J.: Ligand design for functional metal–organic frameworks. Chem. Soc. Rev. 41 (2012) 1088–1110.

  • 4.

    Goesten, M. G.; Kapteijn, F.; Gascon, J.: Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of Metal-Organic Frameworks. CrystEngComm 15 (2013) 9249–9257.

  • 5.

    Rosi, N.; Kim, J.; Chen, B.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M.: Rod-packings and Metal-Organic Frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127 (2005) 1504–1518.

  • 6.

    Parkin, S.; Moezzi,B.; Hope, H.: XABS2: an empirical absorption correction program. J. Appl. Cryst. 28 (1995) 53–56.

  • 7.

    Agilent Technologies: {CrysAlis PRO} Software system, version 1.171.35.15, Agilent Technologies UK Ltd, Oxford, UK 2011.

  • 8.

    Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M.: SIR92 - a program for automatic solution of crystal structures by direct methods. J. Appl. Cryst. 27 (1994) 435–436.

  • 9.

    Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.

    • Crossref
    • Export Citation
  • 10.

    Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany 2012.

  • 11.

    Farrugia, L. J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 32 (1999) 837–838.

  • 12.

    Allen, F.H.; Johnson, O.; Shields, G. P.; Smith, B. R.; Towler, M.: CIF applications. XV. enCIFer: a program for viewing, editing and visualizing CIFs. J. Appl. Cryst. 37 (2004) 335–338.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Yaghi O. M.; O'Keeffe M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J.: Reticular synthesis and the design of new materials. Nature 423 (2003) 405–714.

  • 2.

    Rowsell, J.; Yaghi, O. M.: Metal-Organic Frameworks: A new class of porous materials. Micro- and Mesoporous Mater. 73 (2004) 3–14.

  • 3.

    Almeida Paz, F. A.; Klinowski, J.; Vilela, S. M. F.; Tomé, J. P. C.; Cavaleiroc, J. A. S.; Rocha, J.: Ligand design for functional metal–organic frameworks. Chem. Soc. Rev. 41 (2012) 1088–1110.

  • 4.

    Goesten, M. G.; Kapteijn, F.; Gascon, J.: Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of Metal-Organic Frameworks. CrystEngComm 15 (2013) 9249–9257.

  • 5.

    Rosi, N.; Kim, J.; Chen, B.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M.: Rod-packings and Metal-Organic Frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127 (2005) 1504–1518.

  • 6.

    Parkin, S.; Moezzi,B.; Hope, H.: XABS2: an empirical absorption correction program. J. Appl. Cryst. 28 (1995) 53–56.

  • 7.

    Agilent Technologies: {CrysAlis PRO} Software system, version 1.171.35.15, Agilent Technologies UK Ltd, Oxford, UK 2011.

  • 8.

    Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M.: SIR92 - a program for automatic solution of crystal structures by direct methods. J. Appl. Cryst. 27 (1994) 435–436.

  • 9.

    Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.

    • Crossref
    • Export Citation
  • 10.

    Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany 2012.

  • 11.

    Farrugia, L. J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 32 (1999) 837–838.

  • 12.

    Allen, F.H.; Johnson, O.; Shields, G. P.; Smith, B. R.; Towler, M.: CIF applications. XV. enCIFer: a program for viewing, editing and visualizing CIFs. J. Appl. Cryst. 37 (2004) 335–338.

OPEN ACCESS

Journal + Issues

Search