High temperature superconductivity in sulfur hydride under ultrahigh pressure: A complex superconducting phase beyond conventional BCS

Annette Bussmann-Holder 1 , Jürgen Köhler 1 , M.-H. Whangbo 2 , Antonio Bianconi 3 , 4  and Arndt Simon 1
  • 1 Max- Planck-Institute for Solid State Research, Heisenbergstr. 1, D70569- Stuttgart, Germany
  • 2 Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
  • 3 RICMASS, Rome International Center for Materials Science Superstripes, Via dei Sabelli 119A, 00185 Rome, Italy
  • 4 MEPhI, Moscow Engineering Physics Institute, National Research Nuclear University, Solid State and Nanosystems Physics, Kashirskoye sh. 31, Moscow 115409, Russia

Abstract

The recent report of superconductivity under high pressure at the record transition temperature of Tc =203 K in pressurized H2S has been identified as conventional in view of the observation of an isotope effect upon deuteration. Here it is demonstrated that conventional theories of superconductivity in the sense of BCS or Eliashberg formalisms cannot account for the pressure dependence of the isotope coefficient. The only way out of the dilemma is a multi-band approach of superconductivity where already small interband coupling suffices to achieve the high values of Tc together with the anomalous pressure dependent isotope coefficient. In addition, it is shown that anharmonicity of the hydrogen bonds vanishes under pressure whereas anharmonic phonon modes related to sulfur are still active.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] E. Zurek, R. Hoffmann, N. W. Ashcroft, A. R. Oganov, and A. O. Lyakhov, Proceedings of the National Academy of Sciences 106, 2009, 17640.

  • [2] N.W. Ashcroft Physical Review Letters 92, 2004. 187002.

  • [3] N.W. Ashcroft Symmetry and higher superconductivity in the lower elements. In (A. Bianconi, ed.) Symmetry and Heterogeneity in High Temperature Superconductors. vol. 214 of NATO Science Series II:Mathematics, Physics and Chemistry, 3-20, 2006.

  • [4] E. Babaev, A. Sudbo, N.W. Ashcroft, Nature 431, 2004, 666.

  • [5] H. Shimizu, H. Yamaguchi, S. Sasaki, A. Honda, S. Endo, and M. Kobayashi, Phys. Rev. B 51, 1995, 9391.

  • [6] T. Ikeda, Phys. Rev. B 64, 2001, 104103.

  • [7] J. S. Loveday, R. J. Nelmes, S. Klotz, J. M. Besson, and G. Hamel, Phys. Rev. Lett. 85, 2000, 1024.

  • [8] Y. Li, J. Hao, H. Liu, Y. Li, Y. Ma, The Journal of Chemical Physics 140, 2014, 174712.

  • [9] D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Scientific Reports 4, 2014, 6968 http://dx.doi.org/10.1038/srep06968

  • [10] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov & S. I. Shylin, Nature 525, 2015, 73-76.

  • [11] D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, Physical Review B 91, 2015, 184511 http://dx.doi.org/ 10.1103/physrevb.91.184511

  • [12] I. Errea, M. Calandra, C.J. Pickard, J. Nelson, R.J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, F. Mauri, Phys. Rev. Lett. 114, 2015, 157004.

  • [13] E. Cartlidge, Nature 524, 2015, 277.

  • [14] A.P. Durajski, R. Szczesniak, Y. Li, Physica C 515, 2014, 1.

  • [15] N. Bernstein, C.S. Hellberg, M.D. Johannes, I.I.Mazin, M.J. Mehl, Phys. Rev. B 91, 2015, 060511.

  • [16] “Superconductivity in Complex Systems”, (A. Bussmann- Holder. K.A. Muller eds) A. Bianconi, V.H Crespi, S, Deng, T. Egami, A. Furrer, O. Gunnarson et al. (A. Bussmann-Holder. K.A. Muller eds) Springer Series Structure and Bonding 114, Springer Verlag Berlin Heidelberg 2005 doi: 10.1007/b12231

  • [17] A. Bianconi, Solid State Communications 91, 1994, 1.

  • [18] G. Campi, A. Bianconi, N. Poccia, et al. Nature 525, 2015, 359

  • [19] J. P. Franck, J. Jung, M. A-K. Mohamed, S. Gygax, and G. I. Sproule, Phys. Rev. B 44, 1991, 5318;

  • [20] J. P. Franck, S. Harker, and J. H. Brewer, Phys. Rev. Lett. 71, 1993, 283

  • [21] A. Perali, D. Innocenti, A. Valletta, and A. Bianconi, Supercond. Sci. Technol. 25, 2012, 124002

  • [22] Annette Bussmann-Holder, Hugo Keller, J. Phys.: Condensed Matter 24, 2012, 233201.

  • [23] R. Khasanov, M. Bendele, A. Bussmann-Holder, and H. Keller, Phys. Rev. B 82, 2010, 212505.

  • [24] For a review see H. Keller, in ref. 16, p. 143 (2005).

  • [25] A. Bianconi, M. Missori, H. Oyanagi, H. Yamaguchi, D.H. Ha, Y. Nishiara, S Della Longa EPL (Europhysics Letters) 31, 1995, 411.

  • [26] A. Bianconi, A. Valletta, A. Perali, N. L. Saini Solid State Communications 102, 1997, 369.

  • [27] A. Bianconi, D. Di Castro, S. Agrestini, G. Campi, N. L. Saini, A. Saccone, S. De Negri, M. Giovannini. Journal of Physics: Condensed Matter 13 (2001) 7383.

  • [28] A. Bussmann-Holder and A. Bianconi, Phys. Rev. B 67, 2003, 132509

  • [29] L. Simonelli, V. Palmisano, M. Fratini, M. Filippi, P. Parisiades, D. Lampakis, E. Liarokapis, and A. Bianconi, Phys. Rev. B 80, 2009, 014520 .

  • [30] S. Deng, A. Simon, J. Köhler, J. Supercond. 16, 2003, 477.

  • [31] D. Innocenti and A. Bianconi, J. Supercond. Nov. Magn. 26, 2013, 1319

  • [32] V.A. Moskalenko, Fiz. Metal. Metalloved. 8, 1959, 503.

  • [33] H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett. 3, 1959, 552.

  • [34] G. M. Eliashberg, Sov. Phys. JETP 11, 1960, 696

  • [35] G. M. Eliashberg, Sov. Phys. JETP 12, 1961, 1000.

  • [36] P. B. Allen, R. C. Dynes, Phys. Rev. B 12, 1975, 905.

  • [37] M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. Eremets, A. Drozdov, I. Troyan, N. Hirao, Y. Ohishi, Nature Physics (2016) doi: 10.1038/nphys3760; preprint 2015 arXiv:1509.03156.

  • [38] T. Jarlborg and A. Bianconi, Sci. Rep. 6, 2016, 24816; doi: 10.1038/srep24816

  • [39] A. Bianconi and T. Jarlborg, EPL (Europhys. Lett.) 112, 2015, 37001

  • [40] A. Bianconi and T. Jarlborg, Novel Supercond.Materials 1, 2015, 37

  • [41] L. P. Gor’kov and V. Z. Kresin, Scientific Reports 6, 2016, 25608

  • [42] S. Deng, J. Köhler, and A. Simon, Angew. Chem. 45, 2006, 599

  • [43] R. Caivano, M. Fratini, N. Poccia, et al.. Superconductor Science and Technology 22, 2008, 014004

  • [44] A. Simon, Phil. Trans. R. Soc. A 373, 2015, 20140192

  • [45] E. E. Gordon, K. Xu, H. Xiang, A. Bussmann-Holder, R. K. Kremer, A. Simon, J. Köhler and M.-H. Whangbo, Angew. Chem. Int. Ed. Engl. 55, 2016, 1.

  • [46] A. Bussmann-Holder and A. R. Bishop, Phys. Rev. B 44, 1991, 2853.

  • [47] K. Kuroki, T. Higashida, and R. Arita, Phys. Rev. B 72, 2005, 212509

  • [48] A. Bianconi, Journal of Superconductivity 18, 2005, 625

  • [49] A. Bianconi, Iranian Journal of Physics Research 6, 2006, 139

  • [50] M. J. S. Dewar, Angew. Chem. Int. Ed. Engl. 26, 1987, 1273.

  • [51] J. A. Morrone, Lin Lin, and R. Car, J. Chem. Phys. 130, 2009, 204511.

  • [52] A. Bussmann-Holder, J. Phys.: Condens. Matter 24, 2012, 273202 doi:10.1088/0953-8984/24/27/273202].

  • [53] A. Bianconi International Journal of Modern Physics B 14, 2000, 3289

  • [54] K.I. Kugel, A.L. Rakhmanov, A.O. Sboychakov, et al. Physical Review B 78, 2008, 165124.

  • [55] G. Campi, A. Bianconi, Journal of Superconductivity and Novel Magnetism 29, 2016, 627. doi: 10.1007/s10948-015-3326-9.

  • [56] A. Bianconi, N. Poccia, A. O. Sboychakov, A. L. Rakhmanov, and K. I. Kugel, Superconductor Science and Technology 28, 2015, 024005 doi:10.1088/0953-2048/28/2/024005.

  • [57] G. Campi, D. Innocenti, and A. Bianconi, Journal of Superconductivity and NovelMagnetism28, 2015,1355 doi: 10.1007/s10948- 015-2955-3.

OPEN ACCESS

Journal + Issues

Novel Superconducting Materials (NSM) is the international journal dedicated to the most important advances in the field of novel superconducting materials. NSM features major developments of structural, electronic, magnetic, chemical, thermodynamic, optical properties, and theoretical modeling of new superconducting materials.

Search