Monolayer Graphene Can Emit SHG Waves

The Dynamical Centrosymmetry Breaking Mechanism

David N. Carvalho 1 , Fabio Biancalana 1 , and Andrea Marini 2
  • 1 School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS , Edinburgh, United Kingdom of Great Britain and Northern Ireland
  • 2 ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels (, Barcelona, Spain


The usually-held notion that monolayer graphene, a centrosymmetric system, does not allow even-harmonic generation when illuminated at normal incidence is challenged by the discovery of a peculiar effect we term the dynamical centrosymmetry breaking mechanism. This effect results in a global pulse-induced oscillation of the Dirac cones which in turn produces second harmonic waves. We prove that this result can only be found by using the full Dirac equation and show that the widely used semiconductor Bloch equations fail to reproduce this and some other important physics of graphene. These results clear the way for further investigation concerning nonlinear light-matter interactions in a wide range of two-dimensional materials admitting either a gapped or ungapped Dirac-like spectrum.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306(5696), pp. 666-669, 2004.

  • [2] K. S. Novoselov and A. K. Geim, “Two-dimensional gas of massless dirac fermions in graphene,” Nature, vol. 438, pp. 197-200, 2005.

  • [3] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, vol. 4, pp. 611-622, 2005.

  • [4] T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nature Photonics, vol. 4, pp. 297-301, 2010.

  • [5] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature, vol. 474, pp. 64-67, 2011.

  • [6] A. Marini, I. Silveiro, and F. J. García de Abajo, “Molecular sensing with tunable graphene plasmons,” ACS Photonics, vol. 2, p. 876-882, 2015.

  • [7] M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett., vol. 111, p. 247401, 2013.

  • [8] D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser & Photonics Reviews, vol. 8, p. 291-296, 2014.

  • [9] Q. Bao, H. Zhang, Y.Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced FunctionalMaterials, vol. 19, p. 3077-3083, 2009.

  • [10] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene modelocked ultrafast laser,” ACS Nano, vol. 4, p. 803-810, 2010.

  • [11] N. M. Peres, Y. V. Bludov, J. E. Santos, A. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B, vol. 90, p. 125425, 2014.

  • [12] S. Mikhailov, “Quantum theory of third-harmonic generation in graphene,” Phys. Rev. B, vol. 90, p. 241301, 2014.

  • [13] S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” EPL (Europhysics Letters), vol. 79, no. 2, p. 27002, 2007.

  • [14] K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B, vol. 82, p. 201402, 2010.

  • [15] M. I. Katsnelson, Graphene - Carbon in Two Dimensions. Cambridge University Press, 2012.

  • [16] K. L. Ishikawa, “Electronic response of graphene to an ultrashort intense terahertz radiation pulse,” NewJournal of Physics, vol. 15, no. 5, p. 055021, 2013.

  • [17] J. Hofmann, E. Barnes, and S. das Sarma, “Why does graphene behave as a weakly interacting system?,” Phys. Rev. Lett., vol. 113, p. 105502, Sep 2014.

  • [18] H. Haug and S. W. Koch, Quantum Theory of the Opti- cal and Electronic Properties of Semiconductors. World Scientific, 5 ed., 2009.

  • [19] L. Yang, J. Deslippe, C. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett., vol. 103, p. 186802, 2009.

  • [20] E. G. Mishchenko, “Minimal conductivity in graphene: Interaction corrections and ultraviolet anomaly,” EPL (Europhysics Letters), vol. 83, 2008.

  • [21] A. Giuliani, V. Mastropietro, and M. Porta, “Absence of interaction corrections in the optical conductivity of graphene,” Phys. Rev. B, vol. 83, p. 195401, 2011.

  • [22] I. Gierz, M. Mitrano, J. C. Petersen, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Population inversion inmonolayer and bilayer graphene,” Journal of Physics: Condensed Matter, vol. 27, no. 16, p. 164204, 2015.

  • [23] M. Lindberg and S.W. Koch, “Effective bloch equations for semiconductors,” Phys. Rev. B, vol. 38, pp. 3342-3350, 1988.

  • [24] E.Malic, T.Winzer, E. Bobkin, and A. Knorr, “Microscopic theory of absorption and ultrafastmany-particle kinetics in graphene,” Phys. Rev. B, vol. 84, p. 205406, 2011.

  • [25] T. Stroucken, J. H. Grönqvist, and S. Koch, “Optical response and ground state of graphene,” Phys. Rev. B, vol. 84, p. 205445, 2011.

  • [26] Z. Zhang and P. L. Voss, “Full-band quantum-dynamical theory of saturation and four-wave mixing in graphene,” Optics Letters, vol. 36(23), pp. 4569-4571, 2011.

  • [27] M. M. Glazov, “Second harmonic generation in graphene,” JETP Letters, vol. 93, no. 7, pp. 366-371, 2011.

  • [28] M. V. Entin, L. I. Magarill, and D. L. Shepelyansky, “Theory of resonant photon drag in monolayer graphene,” Phys. Rev. B, vol. 81, p. 165441, 2010.

  • [29] K.-H. Lin, S.-W. Weng, P.-W. Lyu, T.-R. Tsai, and W.-B. Su, “Observation of optical second harmonic generation from suspended single-layer and bi-layer graphene,” Applied Physics Letters, vol. 105, p. 151605, 2014.


Journal + Issues