Reconfigurable and Permanent Wetting Patterns on Polymer Surfaces Obtained Using Plasma Oxidation and Laser Ablation

A. Kiraz 1 , Z. Rashid 2 , B. Morova 3 , Ö. Yaman 3 , S. Soydan 4 , Ö. Birer 5 , and I. Yilgor 6
  • 1 Departments of Physics, Electrical and Electronics Engineering, Koç University, Sariyer,, Istanbul, Turkey
  • 2 Department of Electrical and Electronics Engineering, Koç University, Sariyer,, Istanbul, Turkey
  • 3 Department of Physics, Koç University, Sariyer,, Istanbul, Turkey
  • 4 Department of Physics, Istanbul Technical University, Maslak,, Istanbul, Turkey
  • 5 ASELSAN Radar and Electronic Warfare Systems Business Sector, Golbasi,, Ankara, Turkey
  • 6 Department of Chemistry, Koç University, Sariyer,, Istanbul, Turkey


Smart surfaces with preferably reconfigurable wetting properties can lead to key applications in labon- a-chip analytical and preparative systems. In this paper, we present our recent results obtained using polymer surfaces whose wetting properties are modified in a permanent manner using laser ablation and in a reconfigurable manner using plasma oxidation. Polydimethylsiloxane (PDMS) diluted in solvent is used as the polymeric material coated over microscope glass slides in our studies. In the first part, the tracks of ~ 70 μm width are defined over the surface by surface oxidation using cold plasma exposure through a microfluidic channel. In the second part, femtosecond laser micromachining is used for selective removal of polymer coating and uncovering the hydrophilic glass substrate. We experimentally demonstrate guiding of water in the form of filaments and droplets over the obtained hydrophilic tracks of ~ 110 μm. We also discuss preliminary experiments to coat light sensitive azobenzene over a glass substrate with the help of a silane in order to achieve reversible isomerization upon periodic exposure to UV/vis radiation. Furthermore, we elaborate advantages, challenges and the significant role of such patterned surfaces in future applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Iskender Yilgor, Sevilay Bilgin, Mehmet Isik, and Emel Yilgor. Facile preparation of superhydrophobic polymer surfaces. Polymer, 53(6):1180-1188, 2012.

  • [2] Robert J. Daniello, Nicholas E. Waterhouse, and Jonathan P. Rothstein. Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids, 21(8):085103, 2009.

  • [3] Adel M.A. Mohamed, Aboubakr M.Abdullah, and Nathalie A.Younan. Corrosion behavior of superhydrophobic surfaces: A review. Arab. J. Chem., 8(6):749-765, 2015.

  • [4] Almeida Riberet. Anti-fog coatings using the super-hydrophobic approach, 2008.

  • [5] Ludmila B. Boinovich and Alexandre M. Emelyanenko. Anti-icing potential of superhydrophobic coatings. Mendeleev Commun., 23(1):3-10, 2013.

  • [6] Alexandr Jonas, Mehdi Aas, Yasin Karadag, Selen Manioglu, Suman Anand, David McGloin, Halil Bayraktar, and Alper Kiraz. In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities. Lab Chip, 14(16):3093-3100, 2014.

  • [7] Jaesung Son, Shreya Kundu, Lalit K. Verma, Mridul Sakhuja, Aaron J. Danner, Charanjit S. Bhatia, and Hyunsoo Yang. A practical superhydrophilic self cleaning and antireflective surface for outdoor photovoltaic applications. J. Adhes. Sci. Technol., 98:46-51, 2012.

  • [8] Liang Zhang, Ning Zhao, and Jian Xu. Fabrication and application of superhydrophilic surfaces: a review. J. Adhes. Sci. Technol., 28(9):769-790, 2014.

  • [9] Y. Takata, S. Hidaka, M. Masuda, and T. Ito. Pool boiling on a superhydrophilic surface. Int. J. Energy Res., 27(11):1-9, 2003.

  • [10] Giampaolo Mistura and Matteo Pierno. Drop mobility on chemically heterogeneous and lubricant-impregnated surfaces. Adv. Phys. X, 2(3):591-607, 2017.

  • [11] Jana Krenkova and Frantisek Foret. Immobilized microfluidic enzymatic reactors. Electrophoresis, 25(21-22):3550-3563, 2004.

  • [12] Moo-Yeal Lee, Aravind Srinivasan, Bosung Ku, and Jonathan S. Dordick. Multienzyme catalysis in microfluidic biochips. Biotechnol. Bioeng, 83(1):20-28, 2003.

  • [13] Abdennour Abbas, Anthony Treizebre, Philippe Supiot, Nour- Eddine Bourzgui, Didier Guillochon, Dominique Vercaigne- Marko, and Bertrand Bocquet. Cold plasma functionalized terahertz biomems for enzyme reaction analysis. Biosens. Bioelectron., 25(1):154-160, 2009.

  • [14] Kim Shyong Siow, Leanne Britcher, Sunil Kumar, and Hans J. Griesser. Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization - a review. Plasma Process Polym., 3(6):392-418, 2006.

  • [15] Fevzihan Basarir, Nguyen Cuong, Woo-Keun Song, and Tae-Ho Yoon. Surface modification via plasma polymerization of allylamine for antibody immobilization. Macromol. Symp., 249-250(1):61-66, 2007.

  • [16] Natalie Wagner and Patrick Theato. Light-induced wettability changes on polymer surfaces. Polymer, 55:3436-3453, 2014.

  • [17] Dieter’t Mannetje, Somnath Ghosh, Rudy Lagraauw, Simon Otten, Arjen Pit, Christian Berendsen, Jos Zeegers, Dirk van den Ende, and FriederMugele. Trapping of drops by wetting defects. Nature Comm., 5(3559):1-7, 2014.

  • [18] Carlo Rigoni, Matteo Pierno, Giampaolo Mistura, Delphine Talbot, Rene Massart, Jean-Claude Bacri, and Ali Abou- Hassan. Static magnetowetting of ferrofluid drops. Langmuir, 32(30):7639-7646, 2016.

  • [19] Kiyomi Matsuda, Hirotaka Yamamoto, Ayumi Kashiwada, Kazunori Yamada, and Mitsuo Hirata. Surface hydrophilization of ptfe plates by oxygen plasma pre-treatment and photografting - dependence on solvent composition of monomer solution. J. Photopolym. Sci. Technol., 18(2):257-262, 2005.

  • [20] P. K. Chu, J. Y. Chen, Langping Wang, and Lily Huang. Plasmasurface modification of biomaterials. Electrophoresis, 36(5-6):143-206, 2002.

  • [21] H. Hillborg and U. W. Gedde. Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer, 39(10):1991-1998, 1998.

  • [22] Joong Tark Han, Sangcheol Kim, and Alamgir Karim. Uvo-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces. Langmuir, 23(5):2608-2614, 2007. PMID: 17269808.

  • [23] Gerald Blanco-Gomez, Leonard M. Flendrig, and Jonathan M. Cooper. Hysteresis and reversibility of a superhydrophobic photopatternable silicone elastomer. Langmuir, 26(10):7248-7253, 2010.

  • [24] Ho Sun Lim, Joong Tark Han, Donghoon Kwak, Meihua Jin, and Kilwon Cho. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern. J. Am. Chem. Soc., 128(45):14458-14459, 2006.

  • [25] Wei Sun, Shuxue Zhou, Bo You, and Limin Wu. A facile method for the fabrication of superhydrophobic films with multiresponsive and reversibly tunable wettability. J.Mat. Chem. A, 1(9):3146-3154, 2013.

  • [26] Gwendoline Petroffe, ChaoWang, Xavier Sallenave, Gjergji Sini, Fabrice Goubard, and Sebastien Peralta. Fast and reversible photo-responsive wettability on tio2 based hybrid surfaces. J. Mat. Chem. A, 3(21):11533-11542, 2015.

  • [27] Emel Yilgor, Orkun Kaymakci, Mehmet Isik, Sevilay Bilgin, and Iskender Yilgor. Effect of uv/ozone irradiation on the surface properties of electrospun webs and films prepared from polydimethylsiloxane-urea copolymers. Appl. Surf. Sci., 258(10):4246 - 4253, 2012.

  • [28] Sevilay Bilgin, Mehmet Isik, Emel Yilgor, and Iskender Yilgor. Hydrophilization of silicone-urea copolymer surfaces by uv/ozone: Influence of pdms molecular weight on surface oxidation and hydrophobic recovery. Polymer, 54(25):6665-6675, 2013.

  • [29] Zeeshan Rashid, Ipek Atay, Seren Soydan, M. Baris Yagci, Alexandr Jonas, Emel Yilgor, Alper Kiraz, and Iskender Yilgor. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment. Appl. Surf. Sci., 441(28):841-852, 2018.

  • [30] Jennifer L. Fritz and Michael J. Owen. Hydrophobic recovery of plasma-treated polydimethylsiloxane. J. Adhes., 54(1-2):33-45, 1995.

  • [31] Lingfei Hong and Tingrui Pan. Surface microfluidics fabricated by photopatternable superhydrophobic nanocomposite. Microfluid Nanofluid, 10(5):991-997, 2011.

  • [32] Siyuan Xing, Ryan S. Harake, and Tingrui Pan. Droplet-driven transports on superhydrophobic-patterned surface microfluidics. Lab Chip, 11(21):3642-3648, 2011.

  • [33] Brian D. Piorek, Seung Joon Lee, Martin Moskovits, and Carl D. Meinhart. Free-surface microfluidics/surface-enhanced raman spectroscopy for real-time trace vapor detection of explosives. Anal. Chem., 84(22):9700-9705, 2012.

  • [34] Zeeshan Rashid, Umut Can Coskun, Yagiz Morova, Berna Morova, Asuman Asikoglu Bozkurt, Ahmet Erten, Alexandr Jonas, Selcuk Akturk, and Alper Kiraz. Guiding of emulsion droplets in microfluidic chips along shallow tracks defined by laser ablation. Microfluid Nanofluid, 11(160):1-12, 2017.

  • [35] Henrik Hillborg, Nikodem Tomczak, Attila Olah, Holger Schonherr, and G. Julius Vancso. Nanoscale hydrophobic recovery: A chemical force microscopy study of uv/ozone-treated crosslinked poly(dimethylsiloxane). Langmuir, 20(3):785-794, 2003.

  • [36] Shazia Bashir, Muhammad Bashir, Xavier Casadevall i Solvas, Julia M. Rees, and William B. Zimmerman. Hydrophilic surface modification of pdms microchannel for o/w and w/o/w emulsions. Micromachines, 6(10):1445-1458, 2015.

  • [37] H. Hillborg, J.F. Ankner, U.W. Gedde, G.D. Smith, H.K. Yasuda, and K. Wikstrom. Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer, 41(3):6851-6863, 2000.

  • [38] Jacob Scheuer, George T. Paloczi, Joyce K. S. Poon, and Amnon Yariv. Coupled resonator optical waveguides: Toward the slowing and storage of light. Opt. Photonics News, 16(2):36-40, 2005.

  • [39] Alexander M. Leshansky and Len M. Pismen. Breakup of drops in a microfluidic t junction. Phys. Fluids, 21(2):023303, 2009.

  • [40] Piotr Garstecki, Michael J. Fuerstman, Howard A. Stonec, and George M. Whitesides. Formation of droplets and bubbles in a microfluidic t-junction-scaling and mechanism of break-up. Lab Chip, 6(3):437-446, 2006.

  • [41] Remi Dangla, Sungyon Lee, and Charles N. Baroud. Trapping microfluidic drops in wells of surface energy. Phys. Rev. Lett., 107(12):12450, September 2011.

  • [42] Tsevi Beatus, Roy H. Bar-Ziv, and Tsvi Tlusty. The physics of 2d microfluidic droplet ensembles. Phys. Rep., 516(3):103-145, March 2012.

  • [43] Arjen M. Pit, Sander Bonestroo, Daniel Wijnperle, Michel H. G. Duits, and Frieder Mugele. Electrode-assisted trapping and release of droplets on hydrophilic patches in a hydrophobic microchannel. Microfluid Nanofluid, 20(123):1-12, 2016.

  • [44] Kunihiro Ichimura, Sang-Keun Oh, and Masaru Nakagawa. Light-driven motion of liquids on a photoresponsive surface. Science, 288(5471):1624-1626, 2000.

  • [45] Alexandr Jonas, Berna Yalizay, Selcuk Akturk, and Alper Kiraz. Free-standing optofluidic waveguides formed on patterned superhydrophobic surfaces. Appl. Phys. Lett., 104(9):091123, 2014.


Journal + Issues