Terahertz detectors and focal plane arrays

A. Rogalski 1  and F. Sizov 2
  • 1 Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908, Warsaw, Poland
  • 2 Institute of Semiconductor Physics of the Ukrainian National Academy of Sciences, Kiev, 03028, 41 Nauki Ave, Ukraine

Abstract

Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands.

In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] P.H. Siegel, “Terahertz technology”, IEEE T. Microw. Theory 50, 910–928 (2002). http://dx.doi.org/10.1109/22.989974

  • [2] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part I: Introduction and techniques”, Int. J. Infrared Millimeter Waves 27, 465–480 (2006). http://dx.doi.org/10.1007/s10762-006-9103-x

  • [3] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part II: Instrumets”, Int. J. Infrared Milli. 27, 631–655 (2006). http://dx.doi.org/10.1007/s10762-006-9109-4

  • [4] G. Chattopadhyay, “Submillimeter-wave coherent and incoherent sensors for space applications,” in Sensors. Advancements in Modeling, Design Issues, Fabrication and Practical Applications, pp. 387–414, edited by S.C. Mukhopadhyay and R.Y.M. Huang, Springer, New York, 2008.

  • [5] T.W. Crowe, W.L. Bishop, D.W. Porterfield, J.L. Hesler, and R.M. Weikle, “Opening the terahertz window with integrated diode circuits”, IEEE J. Solid-St. Circ. 40, 2104–2110 (2005). http://dx.doi.org/10.1109/JSSC.2005.854599

  • [6] D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quant. Electron. 28, 1–66 (2004). http://dx.doi.org/10.1016/S0079-6727(03)00058-2

  • [7] J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, and M.E. Gershenzon, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics”, Nat. Nanotechnol. 3, 496–500 (2008). http://dx.doi.org/10.1038/nnano.2008.173

  • [8] A.H. Lettington, I.M. Blankson, M. Attia, and D. Dunn, “Review of imaging architecture”, Proc. SPIE 4719, 327–340 (2002). http://dx.doi.org/10.1117/12.477457

  • [9] A.W. Blain, I. Smail, R.J. Ivison, J.-P. Kneib, and D.T. Frayer, “Submillimetre galaxies”, Phys. Rep. 369, 111–176 (2002). http://dx.doi.org/10.1016/S0370-1573(02)00134-5

  • [10] D. Leisawitz, W.C. Danchi, M.J. DiPirro, L.D. Feinberg, D.Y. Gezari, M. Hagopian, W.D. Langer, J.C. Mather, S.H. Moseley, M. Shao, R.F. Silverberg, J.G. Staguhn, M.R. Swain, H.W. Yorke, and X. Zhang, “Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers”, Proc. SPIE 4013, 36–46 (2000). http://dx.doi.org/10.1117/12.393957

  • [11] “10 emerging technologies that will change your world”, Technology Review, 32–50, February 2004.

  • [12] J. Zmuidzinas and P.L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics”, Proc. IEEE 92, 1597–1616 (2004). http://dx.doi.org/10.1109/JPROC.2004.833670

  • [13] B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology”, Nat. Mater. 1, 26–33 (2002). http://dx.doi.org/10.1038/nmat708

  • [14] D. Mittleman, Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003. http://dx.doi.org/10.1007/978-3-540-45601-8

  • [15] E.R. Brown, “Fundamentals of terrestrial millimetre-wave and THz remote sensing”, Int. J. High Speed Electron. 13, 99–1097 (2003).

  • [16] R.M. Woodward, “Terahertz technology in global homeland security”, Proc. SPIE 5781, 22–31 (2005). http://dx.doi.org/10.1117/12.606392

  • [17] D.L. Woolard, R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?”, Proc. IEEE 93, 1722–1743 (2005). http://dx.doi.org/10.1109/JPROC.2005.853539

  • [18] H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system”, Opt. Express 14, 9130–9141 (2006). http://dx.doi.org/10.1364/OE.14.009130

  • [19] M. Tonouchi, “Cutting-edge terahertz technology”, Nat. Photonics 1, 97–105 (2007). http://dx.doi.org/10.1038/nphoton.2007.3

  • [20] A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology. Fundamentals and Applications, Springer, Berlin, 2011.

  • [21] T.G. Phillips and J. Keene, “Submillimeter astronomy”, Proc. IEEE 80, 1662–1678 (1992). http://dx.doi.org/10.1109/5.175248

  • [22] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kuerner, “Short-range ultra-broadband terahertz communications: concept and perspectives”, IEEE Antenn. Propag. M. 49, 24–35 (2007). http://dx.doi.org/10.1109/MAP.2007.4455844

  • [23] F. Sizov, “THz radiation sensors”, Opto-Electron. Rev. 18, 10–36 (2010). http://dx.doi.org/10.2478/s11772-009-0029-4

  • [24] F. Sizov and A. Rogalski, “THz detectors”, Prog. Quant. Electron. 34, 278–347 (2010). http://dx.doi.org/10.1016/j.pquantelec.2010.06.002

  • [25] S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range”, Nature 403, 405–407 (2000). http://dx.doi.org/10.1038/35000166

  • [26] S. Komiyama, “Single-photon detectors in terahertz region”, IEEE J. Sel. Top. Quant. 17, 54–66 (2011). http://dx.doi.org/10.1109/JSTQE.2010.2048893

  • [27] G. Chattopadhyay, “Heterodyne arrays at submillimeter wavelengths”, 38-th General Assembly of Int. Union of Radio Science, New Delhi, October, 2005.

  • [28] P.F. Goldsmith, Ph. Appleton, L. Armus, J. Bauer, D. Benford, A. Blaind, M. Bradford, G. Bryden, M. Dragovan, M. Harwit, G. Helou, W.D. Langer, D. Leisawitz, C. Paineb, and H. Yorke, “CALISTO: The cryogenic aperture large infrared space telescope observatory”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html]).

  • [29] M. Harwit, G. Helou, L. Armus, C.M. Bradford, P.F. Goldsmith, M. Hauser, D. Leisawitz, D.F. Lester, G. Rieke, and S.A. Rinehart, “Far-infrared/submillimeter astronomy from space tracking an evolving universe and the emergence of life”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html

  • [30] J.J. Bock, “Superconducting detector arrays for far-infrared to mm-wave astrophysics”, http://cmbpol.uchicago.edu/depot/pdf/white-paper_j-bock.pdf

  • [31] S. Hargreaves and R.A. Lewis, “Terahertz imaging: Materials and methods”, J. Mater. Sci.: Mater. Electron. 18, S299–S303 (2007). http://dx.doi.org/10.1007/s10854-007-9220-x

  • [32] N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Non-destructive sub-THz CW imaging”, Proc. SPIE 5727, 132–142 (2005). http://dx.doi.org/10.1117/12.590539

  • [33] A. Dobroiu, M. Yamashita, Y.N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward oscillator”, Appl. Opt. 43, 5637–5646 (2004). http://dx.doi.org/10.1364/AO.43.005637

  • [34] A.W.M. Lee, Q. Qin, S. Kumar, B.S. Williams, Q. Hu, and J.L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett. 89, 141125 (2006). http://dx.doi.org/10.1063/1.2360210

  • [35] A.W.M. Lee, B.S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array”, IEEE Photon. Tech. L. 18, 1415–1417 (2006). http://dx.doi.org/10.1109/LPT.2006.877220

  • [36] F.F. Sizov, V.P. Reva, A.G. Golenkov, and V.V. Zabudsky, “Uncooled detector challenges for THz/sub-THz arrays imaging”, J Infrared Millim. Te., DOI 10.1007/s10762-011-9789-2 (2011).

  • [37] M.A. Kinch and B.V. Rollin, “Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor”, Brit. J. Appl. Phys. 14, 672–676 (1963). http://dx.doi.org/10.1088/0508-3443/14/10/317

  • [38] Y. Nakagawa and H. Yoshinaga, “Characteristics of high-sensitivity Ge bolometer”, Jpn. J. Appl. Phys. 9, 125–131 (1970). http://dx.doi.org/10.1143/JJAP.9.125

  • [39] T.-L. Hwang, S.E. Scharz, and D.B. Rutledge, “Microbolometers for infrared detection”, Appl. Phys. Lett. 34, 773–776 (1979). http://dx.doi.org/10.1063/1.90669

  • [40] E.E. Haller, M.R. Hueschen, and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495–497 (1979). http://dx.doi.org/10.1063/1.90861

  • [41] P.L. Richards, “Bolometers for infrared and millimeter waves”, J. Appl. Phys. 76, 1–24 (1994). http://dx.doi.org/10.1063/1.357128

  • [42] J.E. Huffman, “Infrared detectors for 2 to 220 μm astronomy”, Proc. SPIE 2274, 157–169 (1995). http://dx.doi.org/10.1117/12.189241

  • [43] W.W. Hübers, S.G. Pavlov, K. Holldack, U. Schade, and G. Wüstefeld, “Long wavelength response of unstressed and stressed Ge:Ga detectors”, Proc. SPIE 6275, 627505 (2008). http://dx.doi.org/10.1117/12.671580

  • [44] A. Poglish, R.O. Katterloher, R. Hoenle, J.W. Beeman, E.E. Haller, H. Richter, U. Groezinger, N.M. Haegel, and A. Krabbe, “Far-infrared photoconductors for Herschel and SO-FIA”, Proc. SPIE 4855, 115–128 (2003). http://dx.doi.org/10.1117/12.459184

  • [45] M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, and H.G. Leduc, “Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy”, Proc. SPIE 6275, 627508 (2006). http://dx.doi.org/10.1117/12.672036

  • [46] A.D. Turner, J.J. Bock, J.W. Beeman, J. Glenn, P.C. Hargrave, V.V. Hristov, H.T. Nguyen, F. Rahman, S. Sethuraman, and A.L. Woodcraft, “Silicon nitride micromesh bolometer array for submillimeter astrophysics”, Appl. Optics 40, 4921–4932 (2001). http://dx.doi.org/10.1364/AO.40.004921

  • [47] B.S. Karasik, D. Olaya, J. Wei, S. Pereverzev, M.E. Gershenson, J.H. Kawamura, W.R. McGrath, and A. V. Sergeev, “Record-low NEP in hot-electron titanium nanobolometers”, IEEE T. Appl. Supercon. 17, 293–297 (2007). http://dx.doi.org/10.1109/TASC.2007.897167

  • [48] H.-W. Hübers, “Terahertz heterodyne receivers”, IEEE J. Sel. Top. Quant. 14, 378–391 (2008). http://dx.doi.org/10.1109/JSTQE.2007.913964

  • [49] D.J. Benford, “Transition edge sensor bolometers for CMB polarimetry”, http://cmbpol.uchicago.edu/workshops/technology2008/depot/cmbpol_technologies_benford_jcps_4. pdf

  • [50] P.L. Richards, “Cosmic microwave background experiments — past, present and future”, http://sciencestage.com/d/5334058/

  • [51] F. Sizov, Photoelectronics for Vision Systems in Invisible Spectral Ranges, Akademperiodika, Kiev, 2008. (in Russian).

  • [52] N. Kopeika, A System Engineering Approach to Imaging, SPIE Optical Eng. Press, Bellingham, 1998.

  • [53] A.D. Turner, J.J. Bock, J.W. Beeman, J. Glenn, P.C. Hargrave, V.V. Hristov, H.T. Nguyen, F. Rahman, S. Sethuraman, and A.L. Woodcraft, “Silicon nitride micromesh bolometer array for submillimeter astrophysics”, Appl. Optics 40, 4921–4932 (2001). http://dx.doi.org/10.1364/AO.40.004921

  • [54] “Detectors needs for long wavelength astrophysics”, A Report by the Infrared, Submillimeter, and Millimeter Detector Working Group, June 2002; http://safir.gsfc.nasa.gov/docs/ISMDWG_final.pdf

  • [55] J. Glenn, P.A.R. Ade, M. Amarie, J.J. Bock, S.F. Edgington, A. Goldin, S. Golwala, D. Haig, A.E. Lange, G. Laurent, P.D. Maudkopf, M. Yun, and H. Nguyen, “Current status of Bolocam: a large-format millimeter-wave bolometer camera”, Proc. SPIE 4855, 30–40 (2003). http://dx.doi.org/10.1117/12.459369

  • [56] G.M. Voellmer, C.A. Allen, M.J. Amato, S.R. Babu, A.E. Bartels, D.J. Benford, R.J. Derro, C.D. Dowell, D.A. Harper, M.D. Jhabvala, S.H. Moseley, T. Rennick, P.J. Shirron, W.W. Smith, and J.G. Staguhn, “Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II”, Proc. SPIE 4855, 63–72 (2003). http://dx.doi.org/10.1117/12.459315

  • [57] J.G. Staguhn, D.J. Benford, F. Pajot, T.J. Ames, J.A. Chervenak, E.N. Grossman, K.D. Irwin, B. Maffei, S.H. Moseley, T.G. Phillips, C.D. Reintsema, C. Rioux, R.A. Shafer, and G.M. Vollmer, “Astronomical demonstration of superconducting bolometer arrays”, Proc. SPIE 4855, 100–107 (2003). http://dx.doi.org/10.1117/12.459377

  • [58] T.W. Crowe, R.J. Mattauch, H.-P. Roser, W.L. Bishop, W.C.B. Peatman, and X. Liu, “GaAs Schottky diodes for THz mixing applications”, Proc. IEEE 80, 1827–1841 (1992). http://dx.doi.org/10.1109/5.175258

  • [59] G.L. Carr, M.C. Martin, W.R. McKinney, G.R. Neil, K. Jordan, and G.P. Williams, “High power terahertz radiation from relativistic electrons”, Nature 420, 153 (2002). http://dx.doi.org/10.1038/nature01175

  • [60] M. Rodwell, E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind, J. Koo, B. Thibeault, A.C. Gossard, Z. Griffith, J. Hacker, M. Urteaga, D. Mensa, R. Pierson, and B. Brar, “Development of THz transistors and (300–3000 GHz) sub-mm-wave integrated circuits”, The 11th Inter. Symp. on Wireless Personal Multimedia Communications (WPMC 2008); http://www.ece.ucsb.edu/Faculty/Rodwell/publications/2008_9_sept_wpmc_rodwell_digest.pdf

  • [61] B.S. Williams, “Terahertz quantum-cascade lasers”, Nat. Photonics 1, 517–525 (2007). http://dx.doi.org/10.1038/nphoton.2007.166

  • [62] J.R. Tucker and M.J. Feldman, “Quantum detection at millimeter wavelength”, Rev. Mod. Phys. 57, 1055–1113 (1985). http://dx.doi.org/10.1103/RevModPhys.57.1055

  • [63] C.M. Bradford, B.J. Naylor, J. Zmuidzinas, J.J. Bock, J. Gromke, H. Nguyen, M. Dragovan, M. Yun, L. Earle, J. Glenn, H. Matsuhara, P.A.R. Ade, and L. Duband, “WaFIRS: A waveguide far-IR spectrometer: Enabling spectroscopy of high-z galaxies in the far-IR and submillimeter”, Proc. SPIE 4850, 1137–1148 (2003). http://dx.doi.org/10.1117/12.461572

  • [64] M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, and H.G. Leduc, “Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy”, Proc. SPIE 6275, 627508 (2006). http://dx.doi.org/10.1117/12.672036

  • [65] B.S. Karasik and R. Cantor, “Optical NEP in hot-electron nanobolometers”, 21 stInternational Symposium on Space Terahertz Technology, Oxford, 23–25 March, 2010.

  • [66] J.C. Mather, E.S. Cheng, D.A. Cottingham, R.E. Eplee, D.J. Fixsen, T. Hewagama, R.B. Isaacman, K.A. Jensen, S.S. Meyer, P.D. Noerdlinger, S.M. Read, L.P. Rosen, R.A. Shafer, E.L. Wright, C.L. Bennett, N.W. Boggess, M.G. Hauser, T. Kelsall, S.H. Moseley, R.F. Silverberg, G.F. Smoot, R. Weiss, and D.T. Wilkinson, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument”, Astrophys. J. 420, 439–444 (1994). http://dx.doi.org/10.1086/173574

  • [67] J. Dunkley, A. Amblard, C. Baccigalupi, M. Betoule, D. Chuss, A. Cooray, J. Delabrouille, C. Dickinson, G. Dobler, J. Dotson, H.K. Eriksen, D. Finkbeiner, D. Fixsen, P. Fosalba, A. Fraisse, C. Hirata, A. Kogut, J. Kristiansen, C. Lawrence, A.M. Magalhaes, M.A. Miville-Deschenes, S. Meyer, A. Miller, S.K. Naess, L. Page, H.V. Peiris, N. Phillips, E. Pierpaoli, G. Rocha, J.E. Vaillancourt, and L. Verde, “A program of technology development and of sub-orbital observations of the cosmic microwave background polarization leading to and including a satellite mission”, A Report for the Astro-2010 Decadal Committee on Astrophysics, April, 2009.

  • [68] D.H. Auston, “Picosecond optoelectronic switching and gating in silicon”, Appl. Phys. Lett. 26, 101–103 (1975). http://dx.doi.org/10.1063/1.88079

  • [69] P. LeFur and D.H. Auston, “A kilovolt picosecond optoelectronic switch and Pockels cell”, Appl. Phys. Lett. 28, 21–33 (1976). http://dx.doi.org/10.1063/1.88565

  • [70] J.A. Valdmani, G. Mourou, and C.W. Gabel, “Picosecond electrooptic sampling system”, Appl. Phys. Lett. 41, 211–212 (1982). http://dx.doi.org/10.1063/1.93485

  • [71] D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with teraHz beams of dielectrics and semiconductors”, J. Opt. Soc. B7, 2006–2015 (1990).

  • [72] M. Tani, Y. Hirota, C. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas”, Int. J. Infrared Milli. 27, 531–546 (2006). http://dx.doi.org/10.1007/s10762-006-9105-8

  • [73] D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging”, Appl. Phys. B, DOI 10.1007/s003409900011 (1999).

  • [74] W.L. Chan, J. Deibel, and D.M. Mittleman, “Imaging with terahertz radiation”, Rep. Prog. Phys. 70, 1325–1379 (2007). http://dx.doi.org/10.1088/0034-4885/70/8/R02

  • [75] L. Xu, X.-C. Zhang, and D.H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials”, Appl. Phys. Lett. 61, 1784–1786 (1992). http://dx.doi.org/10.1063/1.108426

  • [76] E.R. Brown, K.A. McIntosh, F.W. Smith, K.B. Nichols, M.J. Manfra, C.L. Dennis, and J.P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer”, Appl. Phys. Lett. 64, 3311–3313 (1994). http://dx.doi.org/10.1063/1.111289

  • [77] M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs based photoconductive antenna using 1.55 μm probe”, Appl. Phys. Lett. 77, 1396–1398 (2000). http://dx.doi.org/10.1063/1.1289914

  • [78] M. Suzukia and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femto-second optical pulses”, Appl. Phys. Lett. 86, 163504 (2005). http://dx.doi.org/10.1063/1.1901817

  • [79] H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices”, Appl. Phys. Lett. 92, 163502 (2008). http://dx.doi.org/10.1063/1.2909539

  • [80] D.P. Neikirk, D.B. Rutledge, and M.S. Mucha, “Far-infrared imaging antenna arrays”, Appl. Phys. Lett. 40, 203–205 (1982). http://dx.doi.org/10.1063/1.93053

  • [81] D.B. Rutledge, D.P. Neikirk, and D.P. Kasilingam, “Integrated-circuit antennas”, in: Infrared and Millimeter Waves, Vol. 10, pp. 1–90, ed. K.J. Button, Academic Press, New York, 1983.

  • [82] J. Zhang, Y. Hong, S.L. Braunstein, and K.A. Shore, “Terahertz pulse generation and detection with LT-GaAs photoconductive antenna”, IEE P-Optoelectron. 151, 98–101 (2004). http://dx.doi.org/10.1049/ip-opt:20040113

  • [83] E.R. Brown, A.W.M. Lee, B.S. Navi, and J.E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region”, Microw. Opt. Techn. Let. 48, 524–529 (2006). http://dx.doi.org/10.1002/mop.21398

  • [84] J. Grade, P. Haydon, and D. van der Weide, “Electronic terahertz antennas and probes for spectroscopic detection and diagnostics”, Proc. IEEE 95, 1583–1591 (2007). http://dx.doi.org/10.1109/JPROC.2007.898900

  • [85] R.C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors”, P. IRE 47, 1495–1502 (1959). http://dx.doi.org/10.1109/JRPROC.1959.287047

  • [86] A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2011.

  • [87] T. Ueda, Z. An, and S. Komiyama, “Temperature dependence of novel single-photon detectors in the long-wavelength infrared range”, J. Infrared Millim. Te.; DOI 10.1007/s10762-010-9659-3 (2010).

  • [88] A.G.U. Perera, G. Ariyawansaa, P.V.V. Jayaweeraa, S.G. Matsika, M. Buchanan, and H.C. Liu, “Semiconductor terahertz detectors and absorption enhancement using plasmons”, Microelectron. J. 39, 601–606 (2008). http://dx.doi.org/10.1016/j.mejo.2007.07.086

  • [89] H.C. Liu, H. Luo, C.-Y. Song, Z.R. Wasilewski, A.J. SpringThorpe, and J.C. Cao, “Terahertz quantum well photodetectors”, IEEE J. Sel. Top. Quant. 14, 374–377 (2008). http://dx.doi.org/10.1109/JSTQE.2007.910710

  • [90] D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, and A.G.U. Perera, “Design and optimization of GaAs/AlGaAs hetero-junction infrared detectors”, J. Appl. Phys. 96, 4588–4597 (2004); A.G.U. Perera and W.Z. Shen, “GaAs homojunction interfacial workfunction internal photoemission (HIWIP) far-infrared devices”, Opto-Electron Rev. 7, 153–180 (1999). http://dx.doi.org/10.1063/1.1786342

  • [91] H.C. Liu, “Quantum dot infrared photodetector”, Opto-Electron. Rev. 11, 1–5 (2003).

  • [92] J.A. Ratches, “Current and future trends in military night vision applications”, Ferroelectrics 342, 183–192 (2006). http://dx.doi.org/10.1080/00150190600946351

  • [93] M. Kohin and N. Butler, “Performance limits of uncooled VOx microbolometer focal-plane arrays”, Proc. SPIE 5406, 447–453 (2004). http://dx.doi.org/10.1117/12.542482

  • [94] W. Kruse, L.D. McGlauchlin and R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962.

  • [95] E.H. Putley, “Thermal detectors”, in Optical and Infrared Detectors, pp. 71–100, edited by R.J. Keyes, Springer, Berlin, 1977.

  • [96] P.W. Kruse, Uncooled Thermal Imaging, SPIE Press, Bellingham, 2001. http://dx.doi.org/10.1117/3.415351

  • [97] G.H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter, Cambridge University Press, Cambridge, 2003.

  • [98] W. Whatmore, “Pyroelectric devices and materials”, Rep. Prog. Phys. 49, 1335–1386 (1986). http://dx.doi.org/10.1088/0034-4885/49/12/002

  • [99] P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films”, Rep. Prog. Phys. 64, 1339–1338 (2001). http://dx.doi.org/10.1088/0034-4885/64/10/203

  • [100] V.G. Bozhkov, “Semiconductor detectors, mixers, and frequency multipliers for the terahertz band”, Radiophys. Quantum. El. 46, 631–656 (2003). http://dx.doi.org/10.1023/B:RAQE.0000024993.40125.2b

  • [101] A. Van Der Ziel, “Infrared detection and mixing in heavily doped Schottky barrier diodes”, J. Appl. Phys. 47, 2059–2068 (1976). http://dx.doi.org/10.1063/1.322936

  • [102] H.A. Watson, Microwave Semiconductor Devices and their Circuit Applications, McGraw-Hill, New York, 1969.

  • [103] E.J. Becklake, C.D. Payne, and B.E. Pruer, “Submillimetre performance of diode detectors using Ge, Si and GaAs”, J. Phys. D: Appl. Phys. 3, 473–481 (1970). http://dx.doi.org/10.1088/0022-3727/3/4/306

  • [104] D.T. Young and J.C. Irvin, “Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique”, Proc. IEEE 53, 2130–2132 (1965). http://dx.doi.org/10.1109/PROC.1965.4511

  • [105] T.W. Crowe, D.P. Porterfield, J.L. Hesler, W.L. Bishop, D.S. Kurtz, and K. Hui, “Terahertz sources and detectors”, Proc SPIE 5790, 271–280 (2005). http://dx.doi.org/10.1117/12.604309

  • [106] H.P. Röser, H.-W. Hübers, E Bründermann, and M.F. Kimmitt, “Observation of mesoscopic effects in Schottky diodes at 300 K when used as mixers at THz frequencies”, Semicond. Sci. Tech. 11, 1328–1332 (1996). http://dx.doi.org/10.1088/0268-1242/11/9/014

  • [107] T.W. Crowe and W.C.B. Peatman, “GaAs Schottky diodes for mixing applications beyond 1 THz”, 2nd Int. Symp. on Space Terahertz Technology 323–339, Pasadena, February 26–28, 1991, http://www.nrao.edu/meetings/isstt/papers/1991/1991323339.pdf

  • [108] T.W. Crowe, “GaAs Schottky barrier mixer diodes for the frequency range 1–10 THz”, Int. J. Infrared Milli. 11, 765–777 (1990). http://dx.doi.org/10.1007/BF01010045

  • [109] H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used at submillimeter receivers”, Infrared Phys. 17, 477–483 (1977). http://dx.doi.org/10.1016/0020-0891(77)90058-6

  • [110] R. Titz, B. Auel, W. Esch, H.P. Röser, and G.W. Schwaab, “Antenna measurements of open-structure Schottky mixers and determination of optical elements for a heterodyne system at 184, 214 and 287 μm”, Infrared Phys. 30, 435–441 (1990). http://dx.doi.org/10.1016/0020-0891(90)90003-E

  • [111] I. Mehdi, G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, F. Maiwald, and A. Maestrini, “THz multiplier circuits”, IEEE MTT-S Intern. Microwave Symp. Digest, 341–344, San Francisco, 2006.

  • [112] S.M. Marazita, W.L. Bishop, J.L. Hesler, K. Hui, W.E. Bowen, and T.W. Crowe, “Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding”, IEEE T. Electron. Dev. 47, 1152–1156 (2000). http://dx.doi.org/10.1109/16.842956

  • [113] P. Siegel, R.P. Smith, M.C. Gaidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer”, IEEE T. Microw. Theory 47, 596–604 (1999). http://dx.doi.org/10.1109/22.763161

  • [114] J.A. Copeland, “Diode edge effects on doping profile measurements”, IEEE T. Electron Dev. 17, 404–407 (1970). http://dx.doi.org/10.1109/T-ED.1970.16996

  • [115] V.I. Piddyachiy, V.M. Shulga, A.M. Korolev, and V.V. Myshenko, “High doping density Schottky diodes in the 3 mm wavelength cryogenic heterodyne receiver”, Int. J. Infrared Milli. 26, 1307–1315 (2005). http://dx.doi.org/10.1007/s10762-005-7605-6

  • [116] J.L. Hesler and T.W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors”, http://www.virginiadiodes.com/VDI/pdf/VDI%20Detector%20Char%20ISSTT2007.pdf

  • [117] H. Kazemi, G. Nagy, L Tran, E. Grossman, E.R. Brown, A.C. Gossard, G.D. Boreman, B. Lail, A.C. Young, and J.D. Zimmerman, “Ultra sensitive ErAs/InAlGaAs direct detectors for millimeter wave and THz imaging applications”, IEEE/MTT Int. Microwave Symposium, 1367–1370 (2007).

  • [118] E.R. Brown, A.C. Young, J.E. Bjarnason, J.D. Zimmerman, A.C. Gossard, and H. Kazemi, “Millimeter and sub-millimeter wave performance of an ErAs:InAlGaAs Schottky diode coupled to a single-turn square spiral”, Int. J. High Speed Electron. 17, 383–394 (2007). http://dx.doi.org/10.1142/S0129156407004576

  • [119] http://www.darpa.mil/mto/programs/tift/pdf/MTT_THz_Workshop.pdf

  • [120] F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D.G. Paveljev, M. Winnerwisser, and G. Winnerwisser, “Planar Schottky diode frequency multiplier for molecular spectroscopy up to 1.3 THz”, IEEE Microw. Guided W. 9, 198–200 (1999). http://dx.doi.org/10.1109/75.766763

  • [121] D.H. Martin, Spectroscopic Techniques for Far-infrared, Submillimeter and Millimeter Waves, North-Holland, Amsterdam, 1967.

  • [122] B.V. Rollin and E.L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures”, Proc. Phys. Soc. B65, 995–996 (1952).

  • [123] E. Burstein, J.J. Oberly and J.W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon”, Phys. Rev. 89, 331–332 (1953). http://dx.doi.org/10.1103/PhysRev.89.331

  • [124] P.R. Bratt, “Impurity germanium and silicon infrared detectors”, in Semiconductors and Semimetals, Vol. 12, pp. 39–142, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1977.

  • [125] J. Wolf, C. Gabriel, U. Grözinger, I. Heinrichsen, G. Hirth, S. Kirches, D. Lemke, J. Schubert, B. Schulz, C. Tilgner, M. Boison, A. Frey, I. Rasmussen, R. Wagner and K. Proetel, “Calibration facility and preflight characterization of the photometer in the Infrared Space Observatory”, Opt. Eng. 33, 26–36 (1994). http://dx.doi.org/10.1117/12.155395

  • [126] G.H. Rieke, M.W. Werner, R.I. Thompson, E.E. Becklin, W.F. Hoffmann, J.R. Houck, F.J. Low, W.A. Stein, and F.C. Witteborn, “Infrared astronomy after IRAS”, Science 231, 807–814 (1986). http://dx.doi.org/10.1126/science.231.4740.807

  • [127] J. Leotin, “Far infrared photoconductive detectors”, Proc. SPIE 666, 81–100 (1986). http://dx.doi.org/10.1117/12.938823

  • [128] Sclar, “Properties of doped silicon and germanium infrared detectors”, Prog. Quant. Electron. 9, 149–257 (1984). http://dx.doi.org/10.1016/0079-6727(84)90001-6

  • [129] E.E. Haller, “Advanced far-infrared detectors”, Infrared Phys. Techn. 35, 127–146 (1994) http://dx.doi.org/10.1016/1350-4495(94)90074-4

  • [130] N.M. Haegel and E.E. Haller, “Extrinsic germanium photoconductor material: crystal growth and characterization”, Proc. SPIE 659, 188–194 (1986). http://dx.doi.org/10.1117/12.938559

  • [131] J.-Q. Wang, P.I. Richards, J.W. Beeman, J.W. Haegel, and E.E. Haller, “Optical efficiency of far-infrared photoconductors”, Appl. Opt. 25, 4127–4134 (1986). http://dx.doi.org/10.1364/AO.25.004127

  • [132] A.G. Kazanskii, P.L. Richards and E.E, Haller, “Far-infrared photoconductivity of uniaxially stressed germanium”, Appl. Phys. Lett. 31, 496–497 (1977). http://dx.doi.org/10.1063/1.89755

  • [133] E.E. Haller, M.R. Hueschen, and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495–497 (1979). http://dx.doi.org/10.1063/1.90861

  • [134] J. Wolf, C. Gabriel, U. Grözinger, I. Heinrichsen, G. Hirth, S. Kirches, D. Lemke, J. Schubert, B. Schulz, C. Tilgner, M. Boison, A. Frey, I. Rasmussen, R. Wagner and K. Proetel, “Calibration facility and preflight characterization of the photometer in the Infrared Space Observatory”, Opt. Eng. 33, 26–36 (1994). http://dx.doi.org/10.1117/12.155395

  • [135] E. Young, J. Stansberry, K. Gordon, and J. Cadien, “Properties of germanium photoconductor detectors”, in Proc. Conf. ESA SP-481, pp. 231–235, edited by L. Metcalfe, A. Salama, S.B. Peschke, and M.F. Kessler, VilSpa, 2001.

  • [136] N. Hiromoto, M. Fujiwara, H. Shibai and H. Okuda, “Ge:Ga far-infrared photoconductors for space applications”, Jpn. J. Appl. Phys. 35, 1676–1680 (1996). http://dx.doi.org/10.1143/JJAP.35.1676

  • [137] Y. Doi, S. Hirooka, A. Sato, M. Kawada, H. Shibai, Y. Okamura, S. Makiuti, T. Nakagawa, N. Hiromoto, and M. Fujiwara, “Large-format and compact stressed Ge:Ga array for the Astro-F (IRIS) mission”, Adv. Space Res. 30, 2099–2104 (2002). http://dx.doi.org/10.1016/S0273-1177(02)00594-X

  • [138] E.T. Young, J.T. Davis, C.L. Thompson, G.H. Rieke, G. Rivlis, R. Schnurr, J. Cadien, L. Davidson, G.S. Winters, and K.A. Kormos, “Far-infrared imaging array for SIRTF”, Proc. SPIE 3354, 57–65 (1998). http://dx.doi.org/10.1117/12.317315

  • [139] A. Poglitsch, C. Waelkens, O.H. Bauer, J. Cepa, H. Feuchtgruber, T. Henning, C. van Hoof, F. Kerschbaum, O. Krause, E. Renotte, L. Rodriguez, P. Saracenoi, and B. Vandenbussche, “The photodetector array camera and spectrometer (PACS) for the Herschel Space Laboratory”, Proc. SPIE 7010, 701005 (2008). http://dx.doi.org/10.1117/12.790016

  • [140] http://fifi-ls.mpg-garching.mpg.dr/detector.html

  • [141] http://pacs.mpe.mpg.de/p15n.html

  • [142] N. Billot, P. Agnese, J.L. Augueres, A. Beguin, and A. Bouere, O. Boulade, C. Cara, C. Cloue, E. Doumayrou, L. Duband, B. Horeau, I. Le Mer, J.L. Pennec, J. Martignac, K. Okumura, V. Reveret, M. Sauvage, F. Simoens, and L. Vigroux, “The Herschel/PACS 2560 bolometers imaging camera”, Proc. SPIE 6265, 62650D (2006). http://dx.doi.org/10.1117/12.671154

  • [143] M. Shirahata, S. Matsuura, T. Nakagawa, T. Wada, S. Kamiya, M. Kawada, Y. Sawayama, Y. Doi, H. Kawada, Y. Creten, B. Okcan, W. Raab, and A. Poglitsh, “Development of a far-infrared Ge:Ga monolithic array detector for SPICA a possible application to SPICA”, Proc. SPIE 7741, 77410B (2010). http://dx.doi.org/10.1117/12.857772

  • [144] J. Farhoomand, D.L. Sisson, and J.W. Beeman, “Viability of layered-hybrid architecture for far IR focal-plane arrays”, Infrared Phys.Techn. 51, 152–159 (2008). http://dx.doi.org/10.1016/j.infrared.2007.07.004

  • [145] M. Ressler, H. Hogue, M. Muzilla, J. Blacksberg, J. Beeman, E. Haller, J. Huffman, J. Farhoomand, and E. Young “Development of large format far-infrared detectors”, Astro2010: The Astronomy and Astrophysics Decadal Survey, Technology Development Papers, no. 18.

  • [146] H.H. Houge, M.G. Mlynczak, M.N. Abedin, S.A. Masterjohn, and J.E. Huffman, “Far-infrared detector development for space-based Earth observation”, Proc. SPIE 7082, 70820E-1–8 (2008).

  • [147] J. Bandaru, J.W. Beeman, and E.E. Haller, “Growth and performance of Ge:Sb blocked impurity band (BIB) detectors”, Proc. SPIE 4486, 193–199 (2002). http://dx.doi.org/10.1117/12.455106

  • [148] L.A. Reichertz, J.W. Beeman, B.L. Cardozo, G. Jakob, R. Katterloher, N.M. Haegel, and E.E. Haller, “Development of a GaAs-based BIB detector for sub-mm wavelengths”, Proc. SPIE 6275, 62751S (2006). http://dx.doi.org/10.1117/12.673039

  • [149] D.R. Khokhlov, I.I. Ivanchik, S.N. Raines, D.M. Watson, and J.L. Pipher, “Performance and spectral response of Pb1−xSnxTe(In) far-infrared photodetectors”, Appl. Phys. Lett. 76, 2835–2837 (2000). http://dx.doi.org/10.1063/1.126489

  • [150] K.G. Kristovskii, A.E. Kozhanov, D.E. Dolzhenko, I.I. Ivanchik, D. Watson, and D.R. Khokhlov, “Photoconductivity of lead telluride-based doped alloys in the submillimeter wavelength range”, Phys. Solid State 46, 122–124 (2004). http://dx.doi.org/10.1134/1.1641937

  • [151] A.N. Akimov, V.G. Erkov, V.V. Kubarev, E.L. Molodtsova, A.E. Klimov, and V.N. Shumskyi, “Photosensitivity of Pb1−x SnxTe:In films in the terahertz region of the spectrum”, Semiconductors 40, 164–168 (2006). http://dx.doi.org/10.1134/S1063782606020096

  • [152] A. Artamkin, A. Nikorici, L. Ryabova, V. Shklover, and D. Khokhlov, “Continuous focal plane array for detection of terahertz radiation”, Proc. SPIE 6297, 62970B (2006). http://dx.doi.org/10.1117/12.680763

  • [153] A.N. Akimov, A.E. Klimov, I.G. Neizvestny, V.N. Shumsky, V.V. Kubarev, O.V. Smolin, and E.V. Susov, “Sensitivity of Pb1–xSnxTe films in submillimeter spectral range”, Prikladnaya Fizika 6, 12–17 (2007). (in Russian).

  • [154] A. Klimov, V. Shumsky, and V. Kubarev, “Terahertz sensitivity of Pb1—xSnxTe:In”, Ferroelectrics 347, 111–119 (2007). http://dx.doi.org/10.1080/00150190601187252

  • [155] A.G. Milnes, Deep Impurities in Semiconductors, Wiley Interscience, New York, 1973.

  • [156] B.A. Volkov, L.I. Ryabova, and D.R. Khokhlov, “Mixed-valence impurities in lead telluride-based solid solutions”, Phys.-Usp. 45, 819–846 (2002). http://dx.doi.org/10.1070/PU2002v045n08ABEH001146

  • [157] Yu.G. Troyan, F.F. Sizov, and V.M. Lakeenkov, “Relaxation time and current instabilities in highly resistive PbTe:Ga single crystals”, Ukr. J. Phys. 32, 467–471 (1987).

  • [158] C. Wilson, L. Frunzio, and D. Prober, “Time-resolved measurements of thermodynamic fluctuations of the particle number in a nondegenerate Fermi gas”, Phys. Rev. Lett. 87, 067004 (2001).

  • [159] C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. Raisanen, “Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions”, Appl. Phys. Lett. 57, 2487–2489 (1990). http://dx.doi.org/10.1063/1.104111

  • [160] E. Burstein, D.N. Langenberg, and B.N. Taylor, “Superconductors as quantum detectors for microwave and sub-millimeter radiation”, Phys. Rev. Lett. 6, 92–94 (1961). http://dx.doi.org/10.1103/PhysRevLett.6.92

  • [161] A.H. Dayem and R.J. Martin, “Quantum interaction of microwave radiation with tunnelling between superconductors”, Phys. Rev. Lett. 8, 246–248 (1962). http://dx.doi.org/10.1103/PhysRevLett.8.246

  • [162] P.K. Tien and J.P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunnelling between superconductor films”, Phys. Rev. 129, 647–651 (1963). http://dx.doi.org/10.1103/PhysRev.129.647

  • [163] P.L. Richards, T.M. Shen, R.E. Harris, and F.L. Lloyd, “Quasiparticle heterodyne mixing in SIS tunnel junctions”, Appl. Phys. Lett. 34, 345–347 (1979). http://dx.doi.org/10.1063/1.90782

  • [164] G.J. Dolan, T.G. Phillips, and D.P. Woody, “Low-noise 115; GHz mixing in superconducting oxide-barrier tunnel junctions”, Appl. Phys. Lett. 34, 347–349 (1979). http://dx.doi.org/10.1063/1.90783

  • [165] J.R. Tucker and M.J. Feldman, “Quantum detection at millimeter wavelength”, Rev. Mod. Phys. 57, 1055–1113 (1985). http://dx.doi.org/10.1103/RevModPhys.57.1055

  • [166] C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. Raisanen, “Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions”, Appl. Phys. Lett. 57, 2487–2489 (1990). http://dx.doi.org/10.1063/1.104111

  • [167] V.P. Koshelets, S.V. Shitov, L.V. Filippenko, P.N. Dmitriev, A.N. Ermakov, A.S. Sobolev, and M.Yu. Torgashin, “Integrated superconducting sub-mm wave receivers”, Radiophys. Quant. Electr. 46, 618–630 (2003). http://dx.doi.org/10.1023/B:RAQE.0000024992.02488.93

  • [168] A. Karpov, D. Miller, F. Rice, J.A. Stern, B. Bumble, H.G. LeDuc, and J. Zmuidzinas, “Low noise SIS mixer for far infrared radio astronomy”, Proc. SPIE 5498, 616–621 (2004). http://dx.doi.org/10.1117/12.553190

  • [169] G. Chattopadhyay, “Future of heterodyne receivers at submillimeter wavelengths”, Digest IRMMW-THz-2005 Conf., 461–462 (2005).

  • [170] G.N. Gol’tsman, “Hot electron bolometric mixers: new terahertz technology”, Infrared Phys. Techn. 40, 199–206 (1999). http://dx.doi.org/10.1016/S1350-4495(99)00011-0

  • [171] R. Blundell and K.H. Gundlach, “A quasioptical SIN mixer for 230 GHz frequency range”, Int. J. Infrared Milli. 8, 1573–1579 (1987). http://dx.doi.org/10.1007/BF01012443

  • [172] M. Nahum, P.L. Richards, and C.A. Mears, “Design analysis of a novel hot-electron microbolometer”, IEEE T. Appl. Supercon. 3, 2124–2127 (1993). http://dx.doi.org/10.1109/77.233921

  • [173] M. Nahum and J. Martinis, “Ultrasensitive hot-electron microbolometer”, Appl. Phys. Lett. 63, 3075–3077 (1993). http://dx.doi.org/10.1063/1.110237

  • [174] D. Chouvaev, D. Sandgren, M. Tarasov, and L. Kuzmin, “Optical qualification of the normal metal hot-electron microbolometer (NHEB),” 12 thInt. Symp. Space THz Technol., San Diego, 446–456 (2001).

  • [175] D. Sandgren, D. Chouvaev, M. Tarasov, and L. Kuzmin, “Fabrication and optical characterization of the normal metal hot-electron microbolometer with Andreev mirrors”, Physica C372, 444–447 (2002).

  • [176] D. Golubev and L. Kuzmin, “Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction”, J. Appl. Phys. 89, 6464–6472 (2001). http://dx.doi.org/10.1063/1.1351002

  • [177] D.R. Schmidt, K.W. Lehnert, A.M. Clark, W.D. Duncan, K.D. Irwin, N. Miller, and J.N. Ullom, “A superconductor-insulator-normal metal bolometer with microwave readout suitable for large-format arrays”, Appl. Phys. Lett. 86, 053505 (2005).

  • [178] P. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays”, Nature 425, 817–821 (2003). http://dx.doi.org/10.1038/nature02037

  • [179] P.R. Maloney, N.G. Czakon, P.K. Day, R. Duan, J. Gao, J. Glenn, S. Golwala, M. Hollister, H.G. LeDuc, B. Mazin, O. Noroozian, H.T. Nguyen, J. Sayers, J. Schlaerth, J.E. Vaillancourt, A. Vayonakis, P. Wilson, and J. Zmuidzinas, “The MKID camera”, AIP Conf. Proc. 1185, 176–179 (2009). http://dx.doi.org/10.1063/1.3292309

  • [180] SELEX GALILEO; http://www.selex-sas.com/EN/Common/files/SELEX_Galileo/Products/DLATGS_dsh.pdf.

  • [181] D. Dooley, “Sensitivity of broadband pyroelectric terahertz detectors continues to improve”, Laser Focus World. May 2010.

  • [182] http://www.spectrumdetector.com/pdf/datasheets/THZ.pdf

  • [183] A.L. Woodcraft, R.V. Sudiwal, E. Wakui, and C. Paine, “Hopping conduction in NTD germanium: comparison between measurement and theory”, J. Low Temp. Phys. 134, 925–944 (2004). http://dx.doi.org/10.1023/B:JOLT.0000013209.08494.01

  • [184] Herschel Space Observatory, http://herschel.jpl.nasa.gov/spireInstrument.shtml

  • [185] P. Agnese, C. Buzzi, P. Rey, L. Rodriguez, and J.L. Tissot, “New technological development for far-infrared bolometer arrays”, Proc. SPIE 3698, 284–290 (1999). http://dx.doi.org/10.1117/12.354530

  • [186] C. Dowell, C.A. Allen, S. Babu, M.M. Freund, M.B. Gardnera, J. Groseth, M. Jhabvala, A. Kovacs, D.C. Lis, S.H. Moseley, T.G. Phillips, R. Silverberg, G. Voellmer, and H. Yoshida, “SHARC II: a Caltech Submillimeter Observatory facility camera with 384 pixels”, Proc. SPIE 4855, 73–87 (2003). http://dx.doi.org/10.1117/12.459360

  • [187] http://herschel.esac.esa.int/science_instruments.shtml

  • [188] G.H. Rieke, “Infrared detector arrays for astronomy”, Annu. Rev. Astrophys. 45, 77–115 (2007). http://dx.doi.org/10.1146/annurev.astro.44.051905.092436

  • [189] E.M. Conwell, “High field transport in semiconductors”, Solid State Physics, Suppl. 9, Academic Press, New York, 1967.

  • [190] T.G. Phillips and K.B. Jefferts, “A low temperature bolometer heterodyne receiver for millimeter wave astronomy”, Rev. Sci. Instrum. 44, 1009–1014 (1973). http://dx.doi.org/10.1063/1.1686288

  • [191] E.H. Putley, “InSb submilimeter photoconductive detectors”, in Semiconductors and Semimetals, Vol. 12, pp. 143–167, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1977.

  • [192] http://www.infraredlaboratories.com/InSb_Hot_e_Bolometers.html

  • [193] P.R. Norton, “Photodetectors”, in Handbook of Optics, Vol. I, chapter 24, edited by M. Bass, McGraw Hill, New York, 2010.

  • [194] K.S. Yngvesson, J.-X. Yang, F. Agahi, D. Dai, C. Musante, W. Grammer, and K.M. Lau, “AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments”, Third Int. Symp. Space THz Techn. 688–705 (1992).

  • [195] Yu.B. Vasilyev, A.A. Usikova, N.D. Il’inskaya, P.V. Petrov, and Yu.L. Ivanov, “Highly sensitive submillimeter InSb photodetectors”, Semiconductors 42, 1234–1236 (2008). http://dx.doi.org/10.1134/S1063782608100163

  • [196] H. Moseley and D. McCammon, “High performance silicon hot electron bolometers”, Ninth Int. Workshop on Low Temperature Detectors, AIP Proc. 605, 103–106 (2002).

  • [197] K. Seeger, Semiconductor Physics, Springer, Berlin, 1991.

  • [198] S.M. Smith, M.J. Cronin, R.J. Nicholas, M.A. Brummell, J.J. Harris, and C.T. Foxon, “Millimeter and submillimeter detection using Ga1−xAlxAs/GaAs heterosructures”, Int. J. Infrared Milli. 8, 793–802 (1987). http://dx.doi.org/10.1007/BF01010721

  • [199] J.-X. Yang, F. Agahi, D. Dai, C.F. Musante, W. Grammer, K.M. Lau, and K.S. Yngvesson, “Wide-bandwidth electron bolometric mixers: a 2DEG prototype and potential for low-noise THz receivers”, IEEE T. Microw. Theory 41, 581–589 (1993). http://dx.doi.org/10.1109/22.231649

  • [200] G.N. Gol’tsman and K.V. Smirnov, “Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures”, JETP Lett. 74, 474–479 (2001). http://dx.doi.org/10.1134/1.1434290

  • [201] A.A. Verevkin, N.G. Ptitsina, K.V. Smirnov, G.N. Gol’tsman, E.M. Gershenzon, and K.S. Ingvesson, “Direct measurements of energy relaxation times on an AlGaAs/GaAs heterointerface in the range 4.2–50 K”, JETP Lett. 64, 404–409 (1996). http://dx.doi.org/10.1134/1.567211

  • [202] T. Phillips and D. Woody, “Millimeter-wave and submillimeter-wave receivers”, Annu. Rev. Astron. Astr. 20, 285–321 (1982). http://dx.doi.org/10.1146/annurev.aa.20.090182.001441

  • [203] E.M. Gershenzon, G.N. Gol’tsman, I.G. Gogdize, Y.P. Gusev, A.J. Elant’ev, B.S. Karasik, and A.D. Semenov, “Millimeter and submillimeter range mixer based on electronic heating of superconducting films in the resistive state”, Superconductivity 3, 1582–1597 (1990).

  • [204] B. Karasik, G.N. Gol’tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekström, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer”, IEEE T. Appl. Supercon. 5, 2232–2235 (1995). http://dx.doi.org/10.1109/77.403029

  • [205] D.E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer”, Appl. Phys. Lett. 62, 2119–2121 (1993). http://dx.doi.org/10.1063/1.109445

  • [206] A. Skalare, W.R. McGrath, B. Bumble, H.G. LeDuc, P.J. Burke, A.A. Vereijen, R.J. Schoelkopf, and D.E. Prober, “Large bandwidth and low noise in a diffusion-cooled hot-electron bolometer mixer”, Appl. Phys. Lett. 68, 1558–1560 (1996). http://dx.doi.org/10.1063/1.115698

  • [207] W.R. McGrath, “Novel hot-electron bolometer mixers for submillimeter applications: An overview of recent developments”, Proc. URSI Int. Symp. on Signals, Systems, and Electronics, 147–152 (1995). http://dx.doi.org/10.1109/ISSSE.1995.497955

  • [208] P.J. Burke, R.J. Schoelkopf, D.E. Prober, A. Skalare, W.R. McGrath, B. Bumble, and H.G. LeDuc, “Length scaling of bandwidth and noise in hot-electron superconducting mixers”, Appl. Phys. Lett. 68, 3344–3346 (1996). http://dx.doi.org/10.1063/1.116052

  • [209] A.D. Semenov, G.N. Gol’tsman, and R. Sobolewski, “Hot-electron effect in semiconductors and its applications for radiation sensors”, Semicond. Sci. Tech. 15, R1–R16 (2002).

  • [210] E.M. Gershenson, M.E. Gershenson, G.N. Goltsman, B.S. Karasik, A.M. Lyul’kin, and A.D. Semenov, “Ultra-fast superconducting electron bolometer”, J. Tech. Phys. Lett. 15, 118–119 (1989).

  • [211] K.S. Il’in, M. Lindgren, M. Currie, A.D. Semenov, G.N. Gol’tsman, R. Sobolewski, S.I. Cherednichenko, and E.M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors”, Appl. Phys. Lett. 76, 2752–2754 (2000). http://dx.doi.org/10.1063/1.126480

  • [212] Y. Gousev, G. Gol’tsman, A. Semenov, E. Gershenzon, R. Nebosis, M. Heusinger, and K. Renk, “Broad-band ultrafast superconducting NbN detector for electromagnetic-radiation”, J. Appl. Phys. 75, 3695–3697 (1994). http://dx.doi.org/10.1063/1.356060

  • [213] J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. Gao, T. Klapwijk, B. Voronov, and G. Gol’tsman, “Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers”, J. Appl. Phys. 100, 184103 (2006). http://dx.doi.org/10.1063/1.2234802

  • [214] W.J. Skocpol, M.R. Beasly, and M. Tinkham, “Self-heating hotspots in superconducting thin-film microbridges”, J. Appl. Phys. 45, 4054–4066 (1974). http://dx.doi.org/10.1063/1.1663912

  • [215] A.D. Semenov and H.-W. Hübers, “Frequency bandwidth of a hot-electron mixer according to the hot-spot model”, IEEE T. Appl. Supercon. 11, 196–199 (2001). http://dx.doi.org/10.1109/77.919318

  • [216] http://www.sron.nl/index.php?option=com_content&task=view&id=44&Itemid=111

  • [217] S.E. Schwarz and B.T. Ulrich, “Antenna-coupled infrared detectors”, J. Appl. Phys. 85, 1870–1873 (1977). http://dx.doi.org/10.1063/1.323940

  • [218] A. Balanis, Antenna Theory: Analysis and Design, 3rd edition, Wiley & Sons, New York 2005.

  • [219] J. Volakis, Antenna Engineering Handbook, 4th edition, McGraw-Hill, New York, 2007.

  • [220] A.J. Kreisler and A. Gaugue, “Recent progress in HTSC bolometric detectors at terahertz frequencies”, Proc. SPIE 3481, 457–468 (1998). http://dx.doi.org/10.1117/12.335899

  • [221] G.N. Gol’tsman, Yu.B. Vachtomin, S.V. Antipov, M.I. Finkel, S.N. Maslennikiv, K.V. Smirnov, S.L. Poluakov, S.I. Svechnikov, N.S. Kaurova, E.V. Grishina, and B.M. Voronov, “NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers”, Proc. SPIE 5727, 95–106 (2005). http://dx.doi.org/10.1117/12.590490

  • [222] D. Rutledge and M. Muha, “Imaging antenna arrays”, IEEE T. Antennas Propagat. AP-30, 535–540 (1982). http://dx.doi.org/10.1109/TAP.1982.1142856

  • [223] A.J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range”, Supercond. Sci. Tech. 13, 1235–1245 (2000). http://dx.doi.org/10.1088/0953-2048/13/8/321

  • [224] O. Harnack, B. Karasik, W. McGrath, A. Kleinsasser, and J. Barner, “Submicron-long HTS hot-electron mixers”, Supercond. Sci. Tech. 12, 850–852 (1999). http://dx.doi.org/10.1088/0953-2048/12/11/347

  • [225] B. Karasik, W. McGrath, and M. Gaidis, “Analysis of a high-Tc hot-electron mixer for terahertz applications”, J. Appl. Phys. 81, 1581–1589 (1997). http://dx.doi.org/10.1063/1.365544

  • [226] F. Ronnung, S. Cherednichenko, G. Gol’tsman, E. Gershen- zon, and D. Winkler, “A nanoscale YBCO mixer optically coupled with a bow tie antenna”, Supercond. Sci. Tech. 12, 853–855 (1999). http://dx.doi.org/10.1088/0953-2048/12/11/348

  • [227] M. Lindgren, M. Currie, C. Williams, T.Y. Hsiang, P.M. Fauchet, R. Sobolewsky, S.H. Moffat, R.A. Hughes, J.S. Preston, and F.A. Hegmann, “Intrinsic picosecond response times of Y-Ba-Cu-O superconducting photoresponse”, Appl. Phys. Lett. 74, 853–855 (1999). http://dx.doi.org/10.1063/1.123388

  • [228] V.V. Shirotov and Yu.Ya. Divin, “Frequency-selective Josephson detector: Power dynamic range at subterahertz frequencies”, Techn. Phys. Lett. 30, 522–524 (2004). http://dx.doi.org/10.1134/1.1773356

  • [229] M.V. Lyatti, D.A. Tkachev, and Yu.Ya. Divin, “Signal and noise characteristics of a terahertz frequency-selective YBa2Cu3O7− Josephson detector”, Techn. Phys. Lett. 32, 860–862 (2006). http://dx.doi.org/10.1134/S1063785006100130

  • [230] D.J. Benford and S.H. Moseley, “Superconducting transition edge sensor bolometer arrays for submillimeter astronomy”, Proc. Int. Symp. on Space and THz Technology, www.eecs.umich.edu/~jeast/benford_2000_4_1.pdf

  • [231] D. Olaya, J. Wei, S. Pereverzev, B.S. Karasik, J.H. Kawamura, W.R. McGrath, A.V. Sergeev, and M.E. Gershenson, “An untrasensitive hot-electron bolometer for low-background SMM applications”, Proc. SPIE 6275, 627506 (2006). http://dx.doi.org/10.1117/12.672303

  • [232] K. Irwin, “An application of electrothermal feedback for high-resolution cryogenic particle-detection”, Appl. Phys. Lett. 66, 1998–2000 (1995). http://dx.doi.org/10.1063/1.113674

  • [233] K. Irwin, G. Hilton, D. Wollman, and J. Martinis, “X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback”, Appl. Phys. Lett. 69, 1945–1947 (1996). http://dx.doi.org/10.1063/1.117630

  • [234] A.T. Lee. P.L. Richards, S.W. Nam, B. Cabrera, and K.D. Irwin, “A superconducting bolometer with strong electrothermal feedback”, Appl. Phys. Lett. 69, 1801–1803 (1996). http://dx.doi.org/10.1063/1.117491

  • [235] G.C. Hilton, J.M. Martinis, K.D. Irwin, N.F. Bergren, D.A. Wollman, M.E. Huber, S. Deiker, and S.W. Nam, “Microfabricated transition-edge X-ray detectors”, IEEE T. Appl. Supercon. 11, 739–742 (2001). http://dx.doi.org/10.1109/77.919451

  • [236] B. Cabrera, R. Clarke, P. Colling, A. Miller, S. Nam, and R. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors”, Appl. Phys. Lett. 73, 735–737 (1998). http://dx.doi.org/10.1063/1.121984

  • [237] W. Duncan, W.S. Holland, M.D. Audley, M. Cliffe, T. Hodson, B.D. Kelly, X. Gao, D.C. Gostick, M. MacIntosh, H. McGregor, T. Peacocke, K.D. Irwin, G.C. Hilton, S.W. Deiker, J. Beier, C.D. Reintsema, A.J. Walton, W. Parkes, T. Stevenson, A.M. Gundlach, C. Dunare, and P.A.R. Ade, “SCUBA-2: Developing the detectors”, Proc. SPIE 4855, 19–29 (2003). http://dx.doi.org/10.1117/12.459107

  • [238] A.J. Walton, W. Parkes, J.G. Terry, C. Dunare, J.T.M. Stevenson, A.M. Gundlach, G.C. Hilton, K.D. Irwin, J.N. Ullom, W.S. Holland, W. Duncan, M.D. Audley, P.A.R. Ade, R.V. Sudiwala, and E. Schulte, “Design and fabrication of the detector technology for SCUBA-2”, IEE Proc.-A 151, 119–120 (2004).

  • [239] A.-D. Brown, D. Chuss, V. Mikula, R. Henry, E. Wollack, Y. Zhao, G.C. Hilton, and J.A. Chervenak, “Auxiliary components for kilopixel transition edge sensor arrays”, Solid State Electron. 52, 1619–1624 (2008). http://dx.doi.org/10.1016/j.sse.2008.06.018

  • [240] S. Lee, J. Gildemeister, W. Holmes, A. Lee, and P. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK”, Appl. Opt. 37, 3391–3397 (1998). http://dx.doi.org/10.1364/AO.37.003391

  • [241] H.F.C. Hoevers, A.C. Bento, M.P. Bruijn, L. Gottardi, M.A.N. Korevaar, W.A. Mels, and P.A.J. de Korte, “Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer”, Appl. Phys. Lett. 77, 4422–4424 (2000). http://dx.doi.org/10.1063/1.1336550

  • [242] M.D. Audley, D.M. Glowacka, D.J. Goldie, A.N. Lasenby, V.N. Tsaneva, S. Withington, P.K. Grimes, C.E. North, G. Yassin, L. Piccirillo, G. Pisano, P.A.R. Ade, G. Teleberg, K.D. Irwin, W.D. Duncan, C.D. Reintsema, M. Halpern, and E.S. Battistellik, “Tests of finline-coupled TES bolometers for COVER”, Digest IRMMW-THz-2007 Conf., 180–181, Cardiff, 2007.

  • [243] J.A. Chervenak, K.D. Irwin, E.N. Grossman, J.M. Martinis, C.D. Reintsema, and M.E. Huber, “Superconducting multiplexer for arrays of transition edge sensors”, Appl. Phys. Lett. 74, 4043–4045 (1999). http://dx.doi.org/10.1063/1.123255

  • [244] P.J. Yoon, J. Clarke, J.M. Gildemeister, A.T. Lee, M.J. Myers, P.L. Richards, and J.T. Skidmore, “Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors”, Appl. Phys. Lett. 78, 371–373 (2001). http://dx.doi.org/10.1063/1.1338963

  • [245] The SQUID Handbook, Vol. II: Applications, edited by J. Clarke and A.I. Braginski, Wiley-VCH, Weinheim, 2006.

  • [246] K.D. Irvin, “SQUID multiplexers for transition-edge sensors”, Physica C 368, 203–210 (2002). http://dx.doi.org/10.1016/S0921-4534(01)01167-4

  • [247] K.D. Irwin, M.D. Audley, J.A. Beall, J. Beyer, S. Deiker, W. Doriese, W.D. Duncan, G.C. Hilton, W.S. Holland, C.D. Reintsema, J.N. Ullom, L.R. Vale, and Y. Xu, “In-focal-plane SQUID multiplexer”, Nuclear Inst. Methods Phys. Research A520, 544–547 (2004). http://dx.doi.org/10.1016/j.nima.2003.11.310

  • [248] K.D. Irvin and G.C. Hilton, “Transition-edge sensors”, in Cryogenic Particle Detection, pp. 63–149, edited by C. Enss, Springer-Verlag, Berlin, 2005.

  • [249] T.M. Lanting, H.M. Cho, J. Clarke, W.L. Holzapfel, A.T. Lee, M. Lueker, P.L. Richards, M.A. Dobbs, H. Spieler, and A. Smith, “Frequency-domain multiplexed readout of transition-edge sensor arrays with a superconducting quantum interference device”, Appl. Phys. Lett. 86, 112511 (2005). http://dx.doi.org/10.1063/1.1884746

  • [250] W.S. Holland, W. Duncan, B.D. Kelly, K.D. Irwin, A.J. Walton, P.A.R. Ade, and E. I. Robson, “SCUBA-2: A new generation submillimeter imager for the James Clerk Maxwell Telescope”, Proc. SPIE 4855, 1–18 (2003). http://dx.doi.org/10.1117/12.459152

  • [251] A.L. Woodcraft, M.I. Hollister, D. Bintley, M.A. Ellis, X. Gao, W.S. Holland, M.J. MacIntosh, P.A.R. Ade, J.S. House, C.L. Hunt, and R.V. Sudiwala, “Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array”, Proc. SPIE 6275, 62751F (2006). http://dx.doi.org/10.1117/12.671310

  • [252] “SCUBA-2,” http://www.roe.ac.uk/ukatc/projects/scubatwo/

  • [253] D.J. Benford, J.G. Steguhn, T.J. Ames, C.A. Allen, J.A. Chervenak, C.R. Kennedy, S. Lefranc, S.F. Maher, S.H. Moseley, F. Pajot, C. Rioux, R.A. Shafer, and G.M. Voellmer, “First astronomical images with a multiplexed superconducting bolometer array”, Proc. SPIE 6275, 62751C (2006). http://dx.doi.org/10.1117/12.672365

  • [254] J. Gildemeister, A. Lee, and P. Richards, “Monolithic arrays of absorber-coupled voltagebiased superconducting bolometers”, Appl. Phys. Lett. 77, 4040–4042 (2000). http://dx.doi.org/10.1063/1.1326844

  • [255] D.J. Benford, G.M. Voellmer, J.A. Chervenak, K.D. Irwin, S.H. Moseley, R.A. Shafer, G.J. Stacey, and J.G. Staguhn, “Thousand-element multiplexed superconducting bolometer arrays”, in Proc. Far-IR, Sub-MM, and MM Detector Workshop, Vol. NASA/CP-2003-211 408, pp. 272–275, edited by J. Wolf, J. Farhoomand, and C.R. McCreight, 2003.

  • [256] J. Gildemeister, A. Lee, and P. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer”, Appl. Phys. Lett. 74, 868–870 (1999). http://dx.doi.org/10.1063/1.123393

  • [257] W. Knap, V. Kachorowskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, and M.A. Khan, C.A. Saylor, and L.C. Brunal, “Nonresonant detection of terahertz radiation in field effect transistors”, J. Appl. Phys. 91, 9346–9353 (2002). http://dx.doi.org/10.1063/1.1468257

  • [258] A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors”, Appl. Phys. Lett. 89, 131926 (2006). http://dx.doi.org/10.1063/1.2358816

  • [259] Y.M. Meziani, J. Lusakowski, N. Dyakonova, W. Knap, D. Seliuta, E. Sirmulis, J. Deverson, G. Valusis, F. Boeuf, and T. Skotnicki, “Non resonant response to terahertz radiation by submicron CMOS transistors”, IEICE T. Electr. E89-C, 993–998 (2006). http://dx.doi.org/10.1093/ietele/e89-c.7.993

  • [260] G.C. Dyer, J.D. Crossno, G.R. Aizin, J. Mikalopas, E.A. Shaner, M.C. Wanke, J.L. Reno, and S.J. Allen, “A narrowband plasmonic terahertz detector with a monolithic hot electron bolometer”, Proc. SPIE 7215, 721503 (2009). http://dx.doi.org/10.1117/12.809619

  • [261] W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y.M. Meziani, and T. Otsuji, “Field effect transistors for terahertz detection: physics and first imaging applications”, J. Infrared Millim. Te. 30, 1319–1337 (2009).

  • [262] W. Knap, D. Coquillat, N. Dyakonova, F. Teppe, O. Klimenko, H. Videlier, S. Nadar, J. Łusakowski, G. Valusis, F. Schustera, B. Giffardd, T. Skotnickie, C. Gaquiere, and A. El Fatimy, “Plasma excitations in field effect transistors for terahertz detection and emission”, C.R. Phys. 11, 433–443 (2010). http://dx.doi.org/10.1016/j.crhy.2010.06.010

  • [263] W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M.S. Shur, “Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors”, Appl. Phys. Lett. 85, 675–677 (2002). http://dx.doi.org/10.1063/1.1775034

  • [264] F. Teppe, M. Orlov, A. El Fatimy, A. Tiberj, W. Knap, J. Torres, V. Gavrilenko, A. Shchepetov, Y. Roelens, and S. Bollaert, “Room temperature tunable detection of subterahertz radiation by plasma waves in nanometer InGaAs transistors”, Appl. Phys. Lett. 89, 222109 (2006). http://dx.doi.org/10.1063/1.2392999

  • [265] R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, and C. Fenouillet-Beranger, “Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006). http://dx.doi.org/10.1063/1.2410215

  • [266] V.I. Gavrilenko, E.V. Demidov, K.V. Marem’yanin, S.V. Morozov, W. Knap, and J. Lusakowski, “Electron transport and detection of terahertz radiation in a GaN/AlGaN submicrometer field-effect transistor”, Semiconductors 41, 232–234 (2007). http://dx.doi.org/10.1134/S1063782607020224

  • [267] Y.M. Meziani, M. Hanabe, A. Koizumi, T. Otsuji, and E. Sano, “Self oscillation of the plasma waves in a dual grating gates HEMT device”, Int. Conf. Indium Phosphide and Related Materials, Conf. Proceedings, 534–537, Matsue, 2007.

  • [268] A.M. Hashim, S. Kasai, and H. Hasegawa, “Observation of first and third harmonic responses in two-dimensional AlGaAs/GaAs HEMT devices due to plasma wave interaction”, Superlattice Microst. 44, 754–760 (2008). http://dx.doi.org/10.1016/j.spmi.2008.08.003

  • [269] V. Ryzhii, A. Satou, I. Khmyrova, M. Ryzhii, T. Otsuji, V. Mitin, and M.S. Shur, “Plasma effects in lateral Schottky junction tunneling transit-time terahertz oscillator”, J. Phys.: Conf. Ser. 38, 228–233 (2006). http://dx.doi.org/10.1088/1742-6596/38/1/055

  • [270] X.G. Peralta, S.J. Allen, M.C. Wanke, N.E. Harff, J.A. Simmons, M.P. Lilly, J.L. Reno, P.J. Burke, and J.P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors”, Appl. Phys. Lett. 81, 1627–1630 (2002). http://dx.doi.org/10.1063/1.1497433

  • [271] M. Dyakonov, and M.S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current”, Phys. Rev. Lett. 71, 2465–2468 (1993). http://dx.doi.org/10.1103/PhysRevLett.71.2465

  • [272] M. Dyakonov and M. Shur, “Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid”, IEEE T. Electron Dev. 43, 1640–1646 (1996). http://dx.doi.org/10.1109/16.536809

  • [273] M. Shur and V. Ryzhii, “Plasma wave electronics”, Int. J. High Speed Electr. Syst. 13, 575–600 (2003). http://dx.doi.org/10.1142/S0129156403001831

  • [274] A. Eguiluz, T.K. Lee, J.J. Quinn, and K.W. Chiu, “Interface excitations in metal-insulator-semiconductor structures”, Phys. Rev. B11, 4989–4993 (1975).

  • [275] S. Kang, P.J. Burke, L.N. Pfeifer, and K.W. West, “Resonant frequency response of plasma wave detector”, Appl. Phys. Lett. 89 213512 (2006).

  • [276] F. Teppe, A. El Fatimy, S. Boubanga, D. Seliuta, G. Valusis, B. Chenaud, and W. Knap, “Terahertz resonant detection by plasma waves in nanometric transistors”, Acta Phys. Pol. A113, 815–820 (2008).

  • [277] D. Veksler, F. Teppe, A.P. Dmitriev, V.Yu. Kachorovskii, W. Knap, and M.S. Shur, “Detection of terahertz radiation in gated two-dimensional structures governed by dc current”, Phys. Rev. B73, 125328 (2006).

  • [278] E. Öjefors, A. Lisauskas, D. Glaab, H.G. Roskos, and U.R. Pfeiffer, lrdTerahertz imaging detectors in CMOS technology”, J. Infrared Millmi. Te. 30, 1269–1280 (2009).

  • [279] E. Öjefors, U.R. Pfeiffer, A. Lisauskas, and H.G. Roskos, “A 0.65 THz focal-plane array in a quarter-micron CMOS process technology”, IEEE J. Solid-St. Circ. 44, 1968–1976 (2009). http://dx.doi.org/10.1109/JSSC.2009.2021911

  • [280] P.J. Burke, “Carbon nanotube devices for GHz to THz applications”, Proc. SPIE 5593, 52–61 (2004). http://dx.doi.org/10.1117/12.568159

  • [281] C.M. Sze. Physics of Semiconductor Devices, Wiley, New York, 1981.

  • [282] V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A.A. Dubinom, and V.Ya. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures”, J. Appl. Phys. 106, 084507-1–6 (2009). http://dx.doi.org/10.1063/1.3247541

  • [283] V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures”, J. Appl. Phys. 107, 054512-1–7 (2010).

  • [284] S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley, Berlin, 2004.

  • [285] Y. Kawano, T. Fuse, S. Toyokawa, T. Uchida, and K. Ishibashi, “Terahertz photon-assisted tunneling in carbon nanotube quantum dots”, J. Appl. Phys. 103, 034307 (2008). http://dx.doi.org/10.1063/1.2838237

  • [286] Y. Kawano, T. Uchida, and K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor”, Appl. Phys. Lett. 95, 083123-1–3 (2009). http://dx.doi.org/10.1063/1.3205125

  • [287] K.S. Yngvesson, K. Fu, B. Fu, R. Zannoni, J. Nicholson, S.H. Adams, A. Ouarraoui, J. Donovan and E. Polizzi, “Experimental detection of terahertz radiation in bundles of single wall carbon nanotubes”, Proc. 19th Int. Symp. Space THz Techn., Groningen, 304–313 (2008).

  • [288] Y. Wang, K. Kempa, B. Kimball, J.B. Carlson, G. Benham, W.Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, and Z.F. Ren, “Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes”, Appl. Phys. Lett. 85, 2607–2609 (2004). http://dx.doi.org/10.1063/1.1797559

  • [289] Y. Wang, Q. Wu, X. He, X. Sun, and T. Gui, “Radiation properties of carbon nanotubes antenna at terahertz/infrared range”, Int. J. Infrared Milli. 29, 35–42 (2008). http://dx.doi.org/10.1007/s10762-007-9306-9

  • [290] O. Astavief, S. Komiyama, T. Kutsuwa, V. Antonov, Y. Kawaguchi, and K. Hirakawa, “Single-photon detector in the microwave range”, Appl. Phys. Lett. 80, 4250–4252 (2002). http://dx.doi.org/10.1063/1.1482787

  • [291] H. Hashiba, V. Antonov, L. Kulik, A. Tzalenchuk, P. Kleind- schmid, S. Giblin, and S. Komiyama, “Isolated quantum dot in application to terahertz photon counting”, Phys. Rev. B73, 081310:1–4 (2006).

  • [292] X.H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector”, Appl. Phys. Lett. 89, 031117-1–3 (2006).

  • [293] T. Ueda, Z. An, S. Komiyama, and K. Hirakawa, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer”, J. Appl. Phys. 103, 093109:1–7 (2008).

  • [294] T. Ueda and S. Komiyama, “Novel ultra-sensitive detectors in the 10–50 μm wavelength range”, Sensors 10, 8411–8423 (2010). http://dx.doi.org/10.3390/s100908411

  • [295] D. Seliuta, I. Kaalynas, V. Tamoinas, S. Balakauskas, Z. Martnas, S. Amontas, G. Valuis, A. Lisauskas, H.G. Roskos, and K. Köhler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature”, Electron. Lett. 44, 825–827 (2006). http://dx.doi.org/10.1049/el:20061224

  • [296] G. Valuis, D. Seliuta, V. Tamoinas, R. Simnikis, S. Balakauskas, and I. Kaalynas, “Selective and broadband terahertz sensors based on GaAs nanostructures”, Workshop THz Wave Technology, Bucharest, 19–20 May, 2008.

  • [297] J.-H. Dai, J.-H. Lee, Y.-L. Lin, and S.-C. Lee, “In(Ga)As quantum rings for terahertz detectors”, J. Appl. Phys. 47, 2924–2926 (2008). http://dx.doi.org/10.1143/JJAP.47.2924

  • [298] S. Bhowmick, G. Huang, W. Guo, C.S. Lee, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “High-performance quantum ring detector for the 1–3 terahertz range”, Appl. Phys. Lett. 96, 231103-1–3 (2010). http://dx.doi.org/10.1063/1.3447364

  • [299] S. Kim, J.D. Zimmerman, P. Focardi, A.C. Gossard, D.H. Wu, and M.S. Sherwin, “Room temperature terahertz detection based on bulk plasmons in antenna-coupled GaAs field effect transistors”, Appl. Phys. Lett. 92, 253508-1–3 (2008).

  • [300] E.A. Shaner, A.D. Grine, J.L. Reno, M.C. Wanke, and S.J. Allen, “Next-generation detectors: Plasmon grating-gate devices have potential as tunable terahertz detectors”, Laser Focus World, January 2008.

  • [301] G.C. Dyer, J.D. Crossno, G.R. Aizin, E.A. Shaner, M.C. Wanke, J.L. Reno, and S.J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometr”, J. Phys.: Condens. Mat. 21, 1958031-1–6 (2009). http://dx.doi.org/10.1088/0953-8984/21/19/195803

  • [302] T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, “A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure”, Opt. Express 14, 4815–4825 (2006). http://dx.doi.org/10.1364/OE.14.004815

OPEN ACCESS

Journal + Issues

Search