Engineering the point spread function of layered metamaterials

A. Pastuszczak 1 , M. Stolarek 1  and R. Kotyński 1
  • 1 Faculty of Physics, University of Warsaw, 7 Pasteura Str., 02-093, Warsaw, Poland


Layered metal-dielectric metamaterials have filtering properties both in the frequency domain and in the spatial frequency domain. Engineering their spatial filtering response is a way of designing structures with specific diffraction properties for such applications as sub-diffraction imaging, supercollimation, or optical signal processing at the nanoscale. In this paper we review the recent progress in this field.

We also present a numerical optimization framework for layered metamaterials, based on the use of evolutionary algorithms. A measure of similarity obtained using Hölder’s inequality is adapted to construct the overall criterion function. We analyse the influence of surface roughness on the quality of imaging.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J.B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000).

  • [2] S.A. Ramakrishna, J.B. Pendry, D. Schurig, D.R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens”, J. Mod. Optics 49, 1747–1762 (2002).

  • [3] N. Fang, H. Lee, C. Sun, and X. Zhang. “Sub-diffraction-limited optical imaging with a silver superlens”, Science, 308: 534–537 (2005).

  • [4] D.O. Melville and R. J. Blaikie. “Super-resolution imaging through a planar silver layer”, Opt. Express 13, 2127–2134 (2005).

  • [5] J.W. Goodman, Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed., Englewood, Colorado, 2005.

  • [6] P. Yeh, Optical Waves in Layered Media, J. Wiley & Sons, New York, 2005.

  • [7] M.J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps”, Appl. Phys. Lett. 72, 1676 (1998).

  • [8] N.D. Mattiucci, G. D’Aguanno, M. Scalora, M.J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to super-resolution”, Opt. Express 17, 17517–17529 (2009).

  • [9] A. Wood, J.B. Pendry, and D. P. Tsai, “Directed subwave-length imaging using a layered metal-dielectric system”, Phys. Rev. B74, 115116 (2006).

  • [10] R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers”, Opto-Electron. Rev. 18, 366–375 (2010).

  • [11] C. Guclu, S. Campione, and F. Capolino, “Hyperbolic meta-material as super absorber for scattered fields generated at its surface”, Phys. Rev. B86, 205130 (2012).

  • [12] P.A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime”, Phys. Rev. B73, 113110 (2006).

  • [13] X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007).

  • [14] R. Kotyński, T. Stefaniuk, and A. Pastuszczak, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers”, Appl. Phys. A103, 905–909 (2011).

  • [15] M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, and J. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks”, Opt. Express 15, 508–523 (2007).

  • [16] D. de Ceglia, M.A. Vincenti, M.G. Cappeddu, M. Centini, N. Akozbek, A. D’razio, J. Haus, M.J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges”, Phys. Rev. A77, 033848 (2008).

  • [17] A.M. Conforti, M. Guasoni, and C.D. Angelis, “Subwavelength diffraction management”, Opt. Lett. 33, 2662 (2008).

  • [18] J. Wang, H. Yuan Dong, K. Hung Fung, T. Jun Cui, and N. X. Fang, “Subwavelength image manipulation through an oblique layered system”, Opt. Express 19, 16809–1682 (2011).

  • [19] C.J. Zapata-Rodriguez, D. Pastor, M.T. Caballero, and J.J. Miret, “Diffraction-managed superlensing using plasmonic lattices”, Opt. Comm. 285, 3358–3362 (2012).

  • [20] O. Kidwai, S.V. Zhukovsky, and J.E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations”, Phys. Rev. A85, 053842 (2012).

  • [21] Z. Jacob, L.V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit”, Opt. Express 14, 8247–8256 (2006).

  • [22] G. Castaldi, S. Savoia, V. Galdi, A. Alu, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs”, Phys. Rev. B86, 115123 (2012).

  • [23] D.C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N.A. Kuhta, and W.D. Goodhue, V.A. Podolskiy, and D. Wasserman, “Funneling Light through a subwavelength aperture with epsilon-near-zero materials”, Phys. Rev. Lett. 107, 133901 (2011).

  • [24] D. S. Filonov, A.P. Slobozhanyuk, P.A. Belov, and Y.S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking”, Phys. Status Solidi RRL 6, 46–48 (2012).

  • [25] R. Kotyński, T.J. Antosiewicz, K. Król, and K. Panajotov, “Two-dimensional point spread matrix of layered metal-dielectric imaging elements”, J. Opt. Soc. Am. A28, 111–117 (2011).

  • [26] D. Schurig and D.R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors”, Appl. Phys. Lett. 82, 2215–2217 (2003).

  • [27] R. Kotynski and K. Chałasińska-Macukow, “Normalization of correlation filters based on the Hölder’s inequality”, Proc. SPIE. 3490, pp. 195–198, doi: 10.1117/12.308920 (1998).

  • [28] P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972).

  • [29] A. Palik (editor), Handbook of Optical Constants of Solids, Academic Press, Orlando, 1998.

  • [30] A. Pastuszczak and R. Kotyński, “Optimised low-loss multi-layers for imaging with sub-wavelength resolution in the visible wavelength range”, J. Appl. Phys. 109, 084302 (2011).

  • [31] A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-soft-ware package for electromagnetic simulations by the FDTD method”, Comput. Phys. Comm. 181, 687–702 (2010).

  • [32] P. Nagpal, N.C. Lindquist, S.-H. Oh, and D.J. Norris, “Ultra-smooth Patterned Metals for Plasmonics and Metamaterials”, Science 325, 594–597, (2009).

  • [33] P. Chaturvedi, W. Wu, V.J. Logeeswaran, Z. Yu, M.S. Islam, S.Y. Wang, R.S. Williams, and N.X. Fang, “A smooth optical superlens”, Appl. Phys. Lett. 96, 043102 (2010).

  • [34] M. Schøler and R.J. Blaikie, “Resonant surface roughness interactions in planar superlenses”, Microelectron. Eng. 87, 887–889 (2010).

  • [35] M. Stolarek, P. Wróbel, T. Stefaniuk, M. Wlazło, A. Pastuszczak, and R. Kotyński, “Spatial filtering with rough metal-dielectric layered metamaterials”, Phot. Lett. of Poland 5, 60–62 (2013).

  • [36] R. Kotynski, H. Baghdasaryan, T. Stefaniuk, A. Pastuszczak, M. Marciniak, A. Lavrinenko, K. Panajotov, and T. Szoplik, “Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies”, Opto-Electron. Rev. 18, 446–457 (2010).

  • [37] S. Huang, H. Wang, K.-H. Ding, and L. Tsang, “Subwave-length imaging enhancement through a three-dimensional plasmon superlens with rough surface”, Opt. Lett. 37, 1295–1297 (2012).


Journal + Issues