Tunability of discrete diffraction in photonic liquid crystal fibres

K. Rutkowska 1 , U. Laudyn 1 , and P. Jung 1
  • 1 Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662, Warsaw, Poland

Abstract

In this paper theoretical and experimental results regarding discrete light propagation in photonic liquid crystal fibres (PLCFs) are presented. Particular interest is focused on tunability of the beam guidance obtained due to the variation in either external temperature or optical power (with assumption of thermal nonlinearity taking place in liquid crystals). Highly tunable (discrete) diffraction and thermal self-(de)focusing are studied and tested in experimental conditions. Specifically, spatial light localization and/or delocalization due to the change in tuning parameters are demonstrated, with possibility of discrete spatial (gap) soliton propagation in particular conditions. Results of numerical simulations (performed for the Gaussian beams of different widths and wavelengths) have been compared to those from experimental tests performed in the PLCFs of interest. Owning to the limit of experimental means, direct qualitative comparison was not quite accessible. Nevertheless, a qualitative agreement between theoretical and experimental data (obtained in analogous conditions) has been achieved, suggesting a compact and widely-accessible platform for the study of tunable linear (and nonlinear) discrete light propagation in two-dimensional systems. Proposed photonic structures are of a great potential for all-optical beam shaping and switching.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibres — Properties and Applications, Springer, The Netherlands, 2007.

  • [2] J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, “All-silica single-mode optical fibre with photonic crystal cladding”, Opt. Lett. 21, 1547–1549 (1996). http://dx.doi.org/10.1364/OL.21.001547

  • [3] P.St.J. Russell, “Photonic crystal fibres”, Science 299, 358–362 (2003). http://dx.doi.org/10.1126/science.1079280

  • [4] K.M. Kiang, K. Frampton, T.M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D.J. Richardson, and H.N. Rutt, “Extruded single mode non-silica glass holey optical fibres”, Electronics Lett. 38, 546–547 (2002). http://dx.doi.org/10.1049/el:20020421

  • [5] X. Feng, T.M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fibre”, Opt. Expr. 11, 2225–2230 (2003). http://dx.doi.org/10.1364/OE.11.002225

  • [6] F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibres”, Opt. Mater. 32, 1532–1539 (2010). http://dx.doi.org/10.1016/j.optmat.2010.06.016

  • [7] A. Millo, L. Lobachinsky, and A. Katzir, “Single-mode index-guiding photonic crystal fibres for the middle infrared”, IEEE Phot. Techn. Lett. 20, 869–871 (2008). http://dx.doi.org/10.1109/LPT.2008.921850

  • [8] M. van Eijkelenborg, M. Large, A. Argyos, J. Zagari, S. Manos, N.A. Issa, I.M. Bassett, S.C. Fleming, R.C. McPhedran, C.M. de Sterke, and N.A.P. Nicorovici, “Microstructured polymer optical fibre”, Opt. Expr. 9, 319–327 (2001). http://dx.doi.org/10.1364/OE.9.000319

  • [9] A. Argyros, M.A. van Eijkelenborg, M.C.J. Large, and I.M. Bassett, “Hollow-core microstructured polymer optical fibre”, Opt. Lett. 31, 172–174 (2006). http://dx.doi.org/10.1364/OL.31.000172

  • [10] I.L. Garanovich, S. Longhi, A.A. Sukhorukov, and Y.S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides”, Phys. Rep. 518, 1–79 (2012). http://dx.doi.org/10.1016/j.physrep.2012.03.005

  • [11] C.R. Rosberg, F.H. Bennett, D.N. Neshev, P.D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y.S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibres”, Opt. Expr. 15, 12145–12150 (2007). http://dx.doi.org/10.1364/OE.15.012145

  • [12] U.A. Laudyn, K.A. Rutkowska, R.T. Rutkowski, M.A. Karpierz, T.R. Woliński, and J. Wójcik, “Nonlinear effects in photonic crystal fibres filled with nematic liquid crystals”, Centr. Europ. J. Phys. 6, 612–618 (2008). http://dx.doi.org/10.2478/s11534-008-0096-z

  • [13] T.R. Woliński, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domański, R. Dąbrowski, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibres”, Meas. Sci. Technol. 17, 985–991 (2006). http://dx.doi.org/10.1088/0957-0233/17/5/S08

  • [14] F. Du, Y-Q Lu, S-T Wu, “Electrically tunable liquid-crystal photonic crystal fibre”, Appl. Phys. Lett. 85, 2181–2183 (2004). http://dx.doi.org/10.1063/1.1796533

  • [15] T.T. Larsen, A. Bjarklev, D.S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres”, Opt. Exp. 11, 2589–2596 (2003). http://dx.doi.org/10.1364/OE.11.002589

  • [16] A.M.R. Pinto, and M. Lopez-Amo, “Photonic crystal fibres for sensing applications”, J. Sensors 2012, ID 598178, 1–21 (2012). http://dx.doi.org/10.1155/2012/598178

  • [17] S. Mathews, G. Farrell, and Y. Semenova, “All-fibre polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibres”, Sensors and Actuators A: Phys. 167(1), 54–59 (2011). http://dx.doi.org/10.1016/j.sna.2011.01.008

  • [18] I.-C. Khoo, Liquid Crystals, Wiley, Hoboken, New Jersey, 2007. http://dx.doi.org/10.1002/0470084030

  • [19] A. Szameit, D. Blömer, and J. Burghoff, “Hexagonal wave-guide arrays written with fs-laser pulses”, Appl. Phys. B82, 507–512 (2006). http://dx.doi.org/10.1007/s00340-005-2127-4

  • [20] T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tunnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica”, Opt. Lett. 29, 468–470 (2004). http://dx.doi.org/10.1364/OL.29.000468

  • [21] D. Cheskis, S. Bar-Ad, R. Morandotti, J.S. Aitchison, H.S. Eisenberg, Y. Silberberg, and D. Ross, “Strong spatiotemporal localization in a silica nonlinear waveguide array”, Phys. Rev. Lett. 91, 223901/1-4 (2003). http://dx.doi.org/10.1103/PhysRevLett.91.223901

  • [22] H.S. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, and J.S. Aitchison, “Discrete spatial optical solitons in wave-guide arrays”, Phys. Rev. Lett. 81, 3383–3386 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.3383

  • [23] D. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavious in linear and nonlinear waveguide lattices”, Nature 424, 817–823 (2003). http://dx.doi.org/10.1038/nature01936

  • [24] N.K. Efremidis, S.M. Sears, D.N. Christodoulides, J.W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically-induced photonic lattices”, Phys. Rev. E66 046602–1-5 (2002).

  • [25] J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, and D.N. Christidoulides, “Observation of discrete solitons in optically-induced real-time waveguide arrays”, Phys. Rev. Lett. 90, 023902–1-4 (2003). http://dx.doi.org/10.1103/PhysRevLett.90.023902

  • [26] H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Brauer, and U. Peschel, “Visual observation of Zener tunnelling”, Phys. Rev. Lett. 96, 023901–1-4 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.023901

  • [27] R. Iwanow, R. Schierk, G.I. Stegeman, T. Pertsch, F. Lederer, Y. Min, and W. Sohel, “Observation of discrete quadratic solitons”, Phys. Rev. Lett. 93, 113902–1-4 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.113902

  • [28] K.A. Rutkowska, M.A. Karpierz, and G.A. Assanto, “Discrete light propagation in arrays of liquid crystalline wave-guides” in Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals, pp. 255–278, Wiley & Sons, Hoboken, New Jersey, 2013.

  • [29] F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics”, Phys. Rep. 463, 1–126 (2008). http://dx.doi.org/10.1016/j.physrep.2008.04.004

  • [30] S. Somekh, E. Garmire, A. Yariv, H.L. Garvin, and R.G. Hunsperger, “Channel optical waveguide directional couplers”, Appl. Phys. Lett. 22, 46 (1973). http://dx.doi.org/10.1063/1.1654468

  • [31] E. Eugenieva, N. Efremidis, and D. Christodoulides, “Design of switching junctions for two dimensional discrete soliton networks”, Opt. Lett. 26, 1978–1980 (2001). http://dx.doi.org/10.1364/OL.26.001978

  • [32] D. Christodoulides and E. Eugenieva, “Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays”, Phys. Rev. Lett. 87, 2339011–1-4 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.233901

  • [33] W. Królikowski, U. Trutschel, M. Cronin-Golomb, and C. Schmidt-Hattenberger, “Solitonlike optical switching in a circular fibre array”, Opt. Lett. 19, 320–322 (1994). http://dx.doi.org/10.1364/OL.19.000320

  • [34] M. Vieweg, T. Gissibl, and H. Giessen, “Photonic-crystal fibres are selectively filled with nonlinear liquids”, Laser Focus World 47, 53–59 (2011).

  • [35] M. Vieweg, T. Gissibl, S. Pricking, B.T. Kuhlmey, D.C. Wu, B.J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibres”, Opt. Expr. 18, 25232–40 (2010). http://dx.doi.org/10.1364/OE.18.025232

  • [36] M. Vieweg, T. Gissibl, Y. Kartashov, L. Torner, and H. Giessen, “Tunable ultrafast nonlinear optofluidic coupler”, Opt. Lett. 37, 2454–2456 (2012). http://dx.doi.org/10.1364/OL.37.002454

  • [37] J. Schirmer, P. Kohns, T. Schmidt-Kaler, A. Muravski, S. Yakovenko, V. Bezborodov, R. Dabrowski, and P. Adomenas, “Birefringence and refractive indices dispersion of different liquid crystalline structures”, Mol. Cryst. Liq. Cryst. 307, 1–26 (1997). http://dx.doi.org/10.1080/10587259708047084

  • [38] J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications”, IEEE/ OSA J. Disp. Technol. 1, 51–61 (2005). http://dx.doi.org/10.1109/JDT.2005.853357

  • [39] M. Medhat, S.Y. El-Zaiat, A. Radi, and M.F. Omar, “Application of fringes of equal chromatic order for investigating the effect of temperature on optical parameters of a GRIN optical fibre”, J. Opt. A: Pure Appl. Opt. 4, 174–179 (2002). http://dx.doi.org/10.1088/1464-4258/4/2/309

  • [40] M.S. Chychłowski, S. Ertman, M.M. Tefelska, T.R. Woliński, E. Nowinowski-Kruszelnicki, and O. Yaroshchuk, “Pho-to-induced orientation of nematic liquid crystals in micro capillaries”, Acta Phys. Pol. A118, 1100–1103 (2010).

  • [41] A.K. Singh, R. Manohar, J.P. Shukla, and A.M. Biradar, “Refractive indices, order parameter and optical transmittance studies of a nematic liquid crystal mixture”, Acta Phys. Pol. A110, 485–493 (2006).

  • [42] B. Bahadur, R.K. Sarna, and V.G. Bhide, “Refractive indices, density and order parameter of some technologically important liquid crystalline mixtures”, Mol. Cryst. Liq. Cryst. 72, 139–145 (1982). http://dx.doi.org/10.1080/01406568208084050

  • [43] F.H. Bennet, I.A. Amuli, A.A. Sukhorukov, W. Krolikowski, D.N. Neshev, and Y.S. Kivshar, “Focusing-to-defocusing crossover in nonlinear photonic structures”, Opt. Lett. 35, 3213–3215 (2010). http://dx.doi.org/10.1364/OL.35.003213

  • [44] P.D. Rasmussen, F.H. Bennet, D.N. Neshev, A.A. Sukhorukov, C.R. Rosberg, W. Krolikowski, O. Bang, and Y.S. Kivshar, “Observation of two-dimensional nonlocal gap solitons”, Opt. Lett. 34, 295–297 (2009). http://dx.doi.org/10.1364/OL.34.000295

  • [45] T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, “Nonlinearity and disorder in fibre arrays”, Phys. Rev. Lett. 93, 053901–1-4 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.053901

  • [46] Y.V. Kartashov, V.A. Vysloukh, and L. Torner, “Disorder—induced soliton transmission in nonlinear photonic lattices”, Opt. Lett. 36, 466–468 (2011). http://dx.doi.org/10.1364/OL.36.000466

OPEN ACCESS

Journal + Issues

Search