Thulium-doped fibre broadband source for spectral region near 2 micrometers

M. Písařík 1 , 3 , P. Peterka 2 , J. Aubrecht 2 , J. Cajzl 2 , 4 , A. Benda 2 , D. Mareš 1 , F. Todorov 2 , O. Podrazký 2 , P. Honzátko 2  and I. Kašík 2
  • 1 Czech Technical University in Prague, Faculty of Electrical Engineering, Technická 2, 166 27 Prague, Czech Republic
  • 2 Institute of Photonics and Electronics of the Czech Academy of Sciences, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic
  • 3 HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, v.v.i., Za Radnicí 828, Dolní Brežany, 252 41, Czech Republic
  • 4 Institute of Chemical Technology, Faculty of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic
M. Písařík, P. Peterka, J. Aubrecht, J. Cajzl, A. Benda, D. Mareš, F. Todorov, O. Podrazký, P. Honzátko and I. Kašík

Abstract

We demonstrated two methods of increasing the bandwidth of a broadband light source based on amplified spontaneous emission in thulium-doped fibres. Firstly, we have shown by means of a comprehensive numerical model that the full-width at half maximum of the thulium-doped fibre based broadband source can be more than doubled by using specially tailored spectral filter placed in front of the mirror in a double-pass configuration of the amplified spontaneous emission source. The broadening can be achieved with only a small expense of the output power. Secondly, we report results of the experimental thulium-doped fibre broadband source, including fibre characteristics and performance of the thulium-doped fibre in a ring laser setup. The spectrum broadening was achieved by balancing the backward amplified spontaneous emission with back-reflected forward emission.

  • 1

    B. Jean and T. Bende, “Mid-IR laser applications in medicine”, in: Solid-State Mid-Infrared Laser Sources. pp. 530–565, Springer-Verlag, Berlin, 2003.

  • 2

    M. Grasso, “Experience with the holmium laser as an endoscopic lithotrite”, Urology 48, 199–206 (1996).

  • 3

    A. Sciarra, M. von Heland, F. Minisola, S. Salciccia, S. Cattarino, and V. Gentile, “Thulium laser supported nephron sparing surgery for renal cell carcinoma”, J. Urol. 190, 698–701 (2013).

  • 4

    Z.Q. Zhao and P.W. Fairchild, “Dependence of light transmission through human skin on incident beam diameter at different wavelengths”, in Laser-Tissue Interaction IX, J. Lotz; S.L. Jacques, Editors, Proc. SPIE 3254, 354–360 (1998).

  • 5

    A.Z. Thomas, L. Smyth, D. Hennessey, F. O’Kelly, D. Moran, and T.H. Lynch, “Zero ischemia laparoscopic partial thulium laser nephrectomy”, J. Endourol. 27, 1366–1370 (2013).

  • 6

    C.L. Tsai, J.C. Chen, and W.J. Wang, “Near-infrared absorption property of biological soft tissue constituents”, J. Med. Biol. Eng. 21, 7–14 (2001).

  • 7

    J. Kwiatkowski, “Highly efficient high power CW and Q-switched Ho:YLF laser”, Opto-Electron. Rev. 23, 165–171 (2015).

  • 8

    J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzatko, I. Kasik, W. Strupinski, and K. Abramski, “All-fibre Ho-doped mode-locked oscillator based on graphene saturable absorber”, Opt. Lett., 41, 2592–2595 (2016).

  • 9

    L. Nagli, O. Gayer, and A. Katzir, “Middle-infrared luminescence of praseodymium ions in silver halide crystals and fibres”, Opt. Lett. 30, 1831–1833 (2005).

  • 10

    D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Pump and signal power combiners for high-power fibre amplifier applications”, Photonics Lett. of Poland 7, 29–31 (2015).

  • 11

    D. Stachowiak, P. Kaczmarek, and K. M. Abramski, “High-power pump combiners for Tm-doped fibre lasers”, Opto-Electron. Rev. 23, 259–267 (2015).

  • 12

    P. Koška, Y. Baravets, P. Peterka, J. Bohata, and M. Pisarik, “Mode-field adapter for tapered-fibre-bundle signal and pump combiners”, Appl. Opt. 54, 751–756 (2015).

  • 13

    J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibres pumped by 2 μm pulses”, IEEE Photonics Technol. Lett. 26, 150–153 (2014).

  • 14

    Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J.P. Wooler, N.V. Wheeler, A.M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M.N. Petrovich, S. Alam, D.J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region”, J. Lightwave Technol. 33, 1373–1379 (2015).

  • 15

    P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined 20 W at 2000 nm from a pair of thulium-doped fibre lasers”, Las. Phys. Lett. 10, 095104 (5pp) (2013).

  • 16

    P. Peterka, P. Honzátko, I. Kašík, O. Podrazký, F. Todorov, J. Cajzl, P. Koška, Y. Baravets, J. Aubrecht, and J. Mrázek, “Thulium-doped fibres and fibre-optic components for fibre lasers at around 2 μm”, Fine Mechanics and Optics 60, 174–177 (2015).

  • 17

    I. Kašík, P. Honzátko, P. Peterka, J. Mrázek, O. Podrazký, J. Aubrecht, J. Proboštová, J. Cajzl, and F. Todorov, “Special optical fibres – heart of thulium and holmium fibre lasers and amplifiers”, Fine Mechanics and Optics 60, 4–7 (2015). (IN CZECH)

  • 18

    M. Písarík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fibre components for “eye-safe” spectral region around 2 μm”, Opt. Quant. Electron. 46, 603–611 (2014).

  • 19

    A.B. Seddon, “ Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo”, Physica Status Solidi (B) 250, 1020–1027 (2013).

  • 20

    K. Oh, A. Kilian, P.M. Weber, L. Reinhart, Q. Zhang, and T.F. Morse, “Broadband superfluorescent emission of the 3 H 4 3 H 6 ${}^3{{\rm{H}}_4} \to {}^3{{\rm{H}}_6}$ transition in a Tm-doped multicomponent silicate fibre”, Opt. Lett. 19, 1131–1133 (1994).

  • 21

    R.M. Percival, D. Szebesta, C.P. Seltzer, S.D. Perin, S.T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fibre laser and amplifier of very high efficiency”, IEEE J. Quantum Electron. 31, 489–493 (1995).

  • 22

    A. Halder, M.C. Paul, S.W. Harun, S.M.M. Ali, N. Saidin, S.S.A. Damanhuri, H. Ahmad, S. Das, M. Pal, S.K. Bhadra, “1880-nm broadband ASE generation with bismuth-thulium co-doped fibre”, IEEE Photonics J. 4, 2176–2181 (2012).

  • 23

    A. Halder, M.C. Paul, N.S. Shahabuddin, S.W. Harun, N. Saidin, S.S.A. Damanhuri, H. Ahmad, S. Das, M. Pal, S.K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad ytterbium-sensitized thulium-doped fibre”, IEEE Photonics Journal 4, 14–18 (2012).

  • 24

    J. Zmojda, D. Dorosz, M. Kochanowicz, and J. Dorosz, “Active glasses as the luminescent sources of radiation for sensor applications”, Bull. Pol. Acad. Sci.-Tech. Sci. 62, 393–397 (2014).

  • 25

    J. Zmojda, M. Kochanowicz, P. Miluski, J. Dorosz, J. Pisarska, W.A. Pisarski, and D. Dorosz, “Investigation of up-conversion luminescence in antimony–germanate double-clad two cores optical fibre co-doped with Yb3+/Tm3+ and Yb3+/Ho3+ ions”, J. Luminescence 170, 795–800 (2016).

  • 26

    P. Honzatko, Y. Baravets, I. Kasik, and O. Podrazky, “Wideband thulium–holmium-doped fibre source with combined forward and backward amplified spontaneous emission at 1600–2300 nm spectral band”, Opt. Lett. 39, 3650–3653 (2014).

  • 27

    J.M. Sousa, M. Melo, L.A. Ferreira, J.R. Salcedo, and M.O. Berendt, “Product design issues relating to rare-earth doped fibre ring lasers and superfluorescence sources”, Proc. SPIE 6102, 610223 (2006).

  • 28

    I. Trifanov, P. Caldas, L. Neagu, R. Romero, M.O. Berendt, J.A.R. Salcedo, A.G. Podoleanu, and A.B. Lobo Ribeiro, “Combined Neodymium – Ytterbium-doped ASE fibre-optic source for optical coherence tomography applications”, IEEE Photonics Technol. Lett. 23, 21–23 (2011).

  • 29

    P. Peterka, F. Todorov, I. Kasik, V. Matejec, O. Podrazký, L. Sasek, G. Mallmann, and R. Schmitt, “Wideband and high-power light sources for in-line interferometric diagnostics of laser structuring systems”, Proc. SPIE 8697, 869718 (2012).

  • 30

    Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 μm mode-locked fibre lasers [Invited]”, Proc. SPIE 8237, 82371N (2012).

  • 31

    Y.H. Tsang, A.F. El-Sherif, and T.A. King, “ Broadband amplified spontaneous emission fibre source near 2 μm using resonant in-band pumping”, J. Modern Optics 52, 109–118 (2005).

  • 32

    Y.H. Tsang, T.A. King, D.-K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm”, J. Modern Optics 53, 991–1001 (2006).

  • 33

    D.Y. Shen, L. Pearson, P. Wang, J.K. Sahu, and W.A. Clarkson, “Broadband Tm-doped superfluorescent fibre source with 11 W single-ended output power”, Opt. Express 16, 11021–11026 (2008).

  • 34

    J. Liu and P. Wang, “High-power broadband Thulium-doped all-fibre superfluorescent source at 2 μm”, IEEE Photonics Technol. Lett. 25, 242–245 (2013).

  • 35

    G.-Y. Yu, J. Chang, Q.-P. Wang, X.-Y. Zhang, Z. Liu, Q.-J. Huang, “A theoretical model of thulium-doped silica fibre’s ASE in the 1900 nm waveband”, Optoelectron. Lett. 6, 45–47 (2010).

  • 36

    M. Gorjan, T. North, and M. Rochette, “Model of the amplified spontaneous emission generation in thulium-doped silica fibres”, J. Opt. Soc. Am. B 29, 2886–2890 (2012).

  • 37

    P. Peterka, I. Kašík, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modelling of fibre laser at 810 nm based on thulium-doped silica fibres with enhanced 3H4 level lifetime”, Opt. Express 19, 2773–2781 (2011).

  • 38

    P. Peterka, I. Kašík, V. Matejec, W. Blanc, B. Faure, B. Dussardier, G. Monnom and V. Kubecek, “Thulium-doped silica-based optical fibres for cladding-pumped fibre amplifiers”, Opt. Mat. 30, 174–176 (2007).

  • 39

    P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers”, Opt. Quant. Electron. 36, 201–212 (2004).

  • 40

    J. Chen, X. Zhu, and W Sibbett, “Rate-equation studies of erbium-doped fibre lasers with common pump and laser energy bands”, J. Opt. Soc. Am. B 9, 1876–1882 (1992).

  • 41

    O. Podrazký, I. Kašík, M. Pospíšilová, and V.Matμjec, “Use of alumina nanoparticles for preparation of erbium-doped fibres”, IEEE Proc. 20th Annual Meeting of the IEE LEOS, pp. 246–247, Lake Buena Vista, Florida, 2007.

  • 42

    D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibres using MCVD nanoparticle doping process”, Proc. SPIE 7580, 75802B, (2010).

  • 43

    W. Blanc and B. Dussardier, “Formation and applications of nanoparticles in silica optical fibres”, J. Optics (India) 45, 247–254 (2016).

  • 44

    I. Kasik, O. Podrazky, J. Mrazek, J. Cajzl, J. Aubrecht, J. Probostova, P. Peterka, P. Honzatko, and A. Dhar, “Erbium and Al2O3 nanocrystals-doped silica optical fibres”, Bull. Pol. Acad. Sci.-Tech. Sci. 62, 641–646 (2014).

  • 45

    R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, “Efficient superfluorescent light sources with broad bandwidth,” IEEE J. of Selected Topics in Quantum Electronics 3, 1097–1099 (1997).

  • 46

    P. Peterka, J. Maria, B. Dussardier, R. Slavik, P. Honzatko, and V. Kubecek, “Long-period fibre grating as wavelength selective element in double-clad Yb-doped fibre-ring lasers”, Laser Phys. Lett. 6, 732–736 (2009).

  • 47

    P. Koška, P. Peterka, J. Aubrecht, O. Podrazký, F. Todorov, M. Becker, Y. Baravets, P. Honzátko, and I. Kašík, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibres”, Opt. Express 24, 102–107 (2016).

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.


Journal + Issues

Search