Between Land and Sea: An Airborne LiDAR Field Survey to Detect Ancient Sites in the Chekka Region/Lebanon Using Spatial Analyses

Jakob Rom 1 , Florian Haas 2 , Manuel Stark 2 , Fabian Dremel 2 , Michael Becht 2 , Karin Kopetzky 3 , Christoph Schwall 3 , Michael Wimmer 4 , Norbert Pfeifer 4 , Mahmoud Mardini 5 , and Hermann Genz 6
  • 1 Catholic University of Eichstaett-Ingolstadt, , Ostenstrasse 14, Eichstaett, 85072, Germany
  • 2 Catholic University of Eichstaett-Ingolstadt, , Eichstätt, Germany
  • 3 Austrian Academy of Sciences, , Vienna, Austria
  • 4 Vienna University of Technology, , Vienna, Austria
  • 5 The Cyprus Institute, , Nicosia, Cyprus
  • 6 American University of Beirut, , Beirut, Lebanon

Abstract

The interdisciplinary project “Between Land and Sea” combines geological, geomorphological and paleo-environmental approaches to identify archaeological remains of the Chekka region (Lebanon). In order to record the topography of this area, the first ever scientific airborne LiDAR data acquisition in Lebanon was conducted in autumn 2018. This work describes not only the acquisition and processing of the LiDAR data, but also the attempt to derive possible archaeological sites from the generated elevation model based on methods for spatial analysis. Using an “inverted mound” (iMound) algorithm, areas of possible settlement structures could be identified, which were classified regarding their probability of a possible ancient site using a deductive predictive model. A preliminary validation of some of the detected favoured areas using high-resolution aerial images has shown that the methods applied can provide hints to previously undiscovered sites. It was possible to identify probable ancient wall remains at several detected locations. In addition, least-cost path analyses were performed to reconstruct possible trade and transport routes from the Lebanon Mountains to the Mediterranean coast. The combination of the results of the iMound detection and classification as well as the calculated path system could point to the strategic location of the modern village of Kfar Hazir as a kind of traffic junction. Moreover, reconstructed main transport routes provide indications of heavily frequented roads and may form the basis for further investigations. To validate the results, upcoming field surveys will be realized on site.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Badreshany, K., & Genz, H. (2009). Pottery production on the Northern Lebanese Coast during the Early Bronze Age II – III: The Petrographic Analysis of the Ceramics from Tell Fadous-Kfarabida. Bulletin of the American Schools of Oriental Research, 355(1), 51–83. https://doi.org/10.1086/BASOR25609334

  • Bell, T., & Lock, G. (2000). Topographic and cultural influences on walking the Ridgeway in later prehistoric times. In G. Lock (Ed.), Beyond the Map. Archaeology and Spatial Technologies (pp. 85–100). Amsterdam, Berlin, Oxford, Tokyo, Washington DC: IOS Press.

  • Brandt, R., Groenewoudt, B. J., & Kvamme, K. L. (1992). An Experiment in Archaeological Site Location: Modeling in the Netherlands using GIS Techniques. World Archaeology, 24(2), 268–282. https://doi.org/10.1080/00438243.1992.9980207

  • Broodbank, C. (2013). The making of the Middle Sea. A History of the Mediterranean from the Beginning to the Emergence of the Classical World. London: Thames & Hudson.

  • Cerrillo-Cuenca, E. (2017). An approach to the automatic surveying of prehistoric barrows through LiDAR. Quaternary International, 435, 135–145. https://doi.org/10.1016/j.quaint.2015.12.099

  • Chase, A. F., Chase, D. Z., Weishampel, J. F., Drake, J. B., Shrestha, R. L., Slatton, K. C., . . . Carter, W. E. (2011). Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. Journal of Archaeological Science, 38(2), 387–398. https://doi.org/10.1016/j.jas.2010.09.018

  • Cohen-Weinberger, A., & Goren, Y. (2004). Levantine-Egyptian interactions during the 12th to the 15th dynasties based on the petrography of the Canaanite pottery from Tell El-Dab’a. Egypt and the Levant, 14, 69–100.

  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., . . . Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

  • Danese, M., Masini, N., Biscione, M., & Lasaponara, R. (2014). Predictive modeling for preventive Archaeology: Overview and case study. Central European Journal of Geosciences, 6(1), 42–55. https://doi.org/10.2478/s13533-012-0160-5

  • Davis, D. S., Sanger, M. C., & Lipo, C. P. (2019). Automated mound detection using lidar and object-based image analysis in Beaufort County, South Carolina. Southeastern Archaeology, 38(1), 23–37. https://doi.org/10.1080/0734578X.2018.1482186

  • Diwan, G. A., & Doumit, J. (2017). The Berytus-Heliopolis Baalbak road in the Roman period: A least cost path analysis. Mediterranean Archaeology & Archaeometry, 17(3), 225–241.

  • Doneus, M. (2013). Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. Remote Sensing, 5(12), 6427–6442. https://doi.org/10.3390/rs5126427

  • Doneus, M., & Kühteiber, T. (2013). Airborne laser scanning and archaeological interpretation – bringing back the people. In R. S. Opitz & D. C. Cowley (Eds.), Interpreting Archaeological Topography. Airborne Laser Scanning, 3D Data and Ground Observation (pp. 32–50). Oxford: Oxbow Books. https://doi.org/10.2307/j.ctvh1dqdz.8

  • Evans, D. H., Fletcher, R. J., Pottier, C., Chevance, J.-B., Soutif, D., Tan, B. S., . . . Boornazian, G. (2013). Uncovering archaeological landscapes at Angkor using lidar. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12595–12600. https://doi.org/10.1073/pnas.1306539110

  • Fábrega-Álvarez, P., & Parcero-Oubiña, C. (2019). Now you see me. An assessment of the visual recognition and control of individuals in archaeological landscapes. Journal of Archaeological Science, 104, 56–74. https://doi.org/10.1016/j.jas.2019.02.002

  • Fares, A. (2010). Survey KN2006: Analysis of the Roman Byzantine Pottery sherds of Ain Ikrine, North Lebanon. Bulletin d’archéologie et d’architecture libanaises, 14, 103–129.

  • Freeland, T., Heung, B., Burley, D. V., Clark, G., & Knudby, A. (2016). Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga. Journal of Archaeological Science, 69, 64–74. https://doi.org/10.1016/j.jas.2016.04.011

  • Genz, H. (2010). Recent excavations at Tell Fadous-Kfarabida. Near Eastern Archaeology, 73(2–3), 102–113. https://doi.org/10.1086/NEA25754040

  • Genz, H. (2016). Simple bone tools from Early Bronze Age Tell Fadous-Kfarabida (Lebanon): A household approach. Levant, 48(2), 154–166. https://doi.org/10.1080/00758914.2016.1195970

  • Genz, H., Damick, A., Berquist, S., Makinson, M., Wygnańska, Z., Mardini, M., . . . El-Zaatari, S. (2018). Excavations at Tell Fadous-Kfarabida. Preliminary Report on the 2014 and 2015 Seasons of Excavations. Bulletin d’archéologie et d’architecture libanaises, 18, 37–78.

  • Glira, P., Pfeifer, N., Briese, C., & Ressl, C. (2015). ‘Rigorous strip adjustment of airborne laserscanning data based on the ICP algorithm’, ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences, II-3(W5), 73–80.

  • Glira, P., Pfeifer, N., & Mandlburger, G. (2016). Rigorous Strip adjustment of UAV-based laserscanning data including time-dependent correction of trajectory errors. Photogrammetric Engineering and Remote Sensing, 82(12), 945–954. https://doi.org/10.14358/PERS.82.12.945

  • Hajar, L., François, L., Khater, C., Jomaa, I., Déqué, M., & Cheddadi, R. (2010). Cedrus libani (A. Rich) distribution in Lebanon: Past, present and future. Comptes Rendus Biologies, 333(8), 622–630. https://doi.org/10.1016/j.crvi.2010.05.003

  • Herzog, I. (2010). Theory and practice of cost functions, In F. Contreras, M. Farjas & F. J. Melero (Eds.), CAA2010 : fusion of cultures : Proceedings of the 38th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Granada, Spain, April 2010 (pp. 431–434). Oxford: Archaeopress.

  • Herzog, I. (2013). The potential and limits of optimal path analysis. In A. Bevan & M. Lake (Eds.), Computational Approaches to Archaeological Spaces (pp. 179–211). Left Coast Press.

  • Herzog, I. (2014). Least-cost Paths – Some Methodological Issues. Internet Archaeology, 36(36). Accessed October 08, 2019. https://doi.org/10.11141/ia.36.5

  • Hesse, R. (2010). LiDAR-derived Local Relief Models – a new tool for archaeological prospection. Archaeological Prospection, 17(2), 67–72. https://doi.org/10.1002/arp.374

  • Hilger, L. (2017). Quantification and regionalization of geomorphic processes using spatial models and high-resolution topographic data: A sediment budget of the Upper Kauner Valley, Ötztal Alps [PhD thesis].Catholic University of Eichstaett-Ingolstadt. Universitätsbibliothek Eichstätt-Ingolstadt. urn:nbn:de:bvb:824-opus4-3814

  • Höflmayer, F., Dee, M. W., Genz, H., & Riehl, S. (2014). Radiocarbon evidence for the Early Bronze Age Levant: The site of Tell Fadous-Kfarabida (Lebanon) and the end of the Early Bronze III period. Radiocarbon, 56(2), 529–542. https://doi.org/10.2458/56.16932

  • Howey, M. C. L. (2007). Using multi-criteria cost surface analysis to explore past regional landscapes: A case study of ritual activity and social interaction in Michigan, AD 1200-1600. Journal of Archaeological Science, 34(11), 1830–1846. https://doi.org/10.1016/j.jas.2007.01.002

  • Kokalj, Ž., Zakšek, K., & Oštir, K. (2011). Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models. Antiquity, 85(327), 263–273. https://doi.org/10.1017/S0003598X00067594

  • Kokalj, Ž., Zakšek, K., & Oštir, K. (2013). Visualizations of lidar derived relief models. In R. S. Opitz & D. C. Cowley (Eds.), Interpreting Archaeological Topography. Airborne Laser Scanning, 3D Data and Ground Observation (pp. 100–114). Oxford: Oxbow Books. https://doi.org/10.2307/j.ctvh1dqdz.13

  • Kopetzky, K. (2010). Egyptian pottery from the Middle Bronze Age in Lebanon. Berytus, 53-54, 167–179.

  • Kopetzky, K., Genz, H., Schwall, C., Rom, J., Haas, F., Stark, M., . . . Börner, M. (2019). Between Land and Sea: Tell Mirhan and the Chekka regional survey. Preliminary Report of the survey and first excavation season (2016-2018). Egypt and the Levant, 29, 105–124.

  • Llobera, M., & Sluckin, T. J. (2007). Zigzagging: Theoretical insights on climbing strategies. Journal of Theoretical Biology, 249(2), 206–217. https://doi.org/10.1016/j.jtbi.2007.07.020

  • Ma, H., Zhou, W., & Zhang, L. (2018). DEM refinement by low vegetation removal based on the combination of full waveform data and progressive TIN densification. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 260–271. https://doi.org/10.1016/j.isprsjprs.2018.09.009

  • Markoe, G. E. (2000). Phoenicians. People of the past. Berkeley, Los Angeles: University of California Press.

  • Masini, N., Gizzi, F. T., Biscione, M., Fundone, V., Sedile, M., Sileo, M., . . . Lasponara, R. (2018). Medieval Archaeology Under the Canopy with LiDAR. The (Re)Discovery of a Medieval Fortified Settlement in Southern Italy. Remote Sensing, 10(10), 1598. https://doi.org/10.3390/rs10101598

  • McCoy, M. D., & Ladefoged, T. N. (2009). New Developments in the Use of Spatial Technology in Archaeology. Journal of Archaeological Research, 17(3), 263–295. https://doi.org/10.1007/s10814-009-9030-1

  • Menze, B. H., Ur, J. A., & Sherratt, A. G. (2006). Detection of Ancient Settlement Mounds: Archaeological Survey Based on the SRTM Terrain Model. Photogrammetric Engineering and Remote Sensing, 72(3), 321–327. https://doi.org/10.14358/PERS.72.3.321

  • Messinger, J., Güney, A., Zimmermann, R., Ganser, B., Bachmann, M., Remmele, S., & Aas, G. (2015). Cedrus libani: A promising tree species for Central European forestry facing climate change? European Journal of Forest Research, 134(6), 1005–1017. https://doi.org/10.1007/s10342-015-0905-z

  • Minetti, A. E., Moia, C., Roi, G. S., Susta, D., & Ferretti, G. (2002). Energy cost of walking and running at extreme uphill and downhill slopes. Journal of Applied Physiology, 93(3), 1039–1046. https://doi.org/10.1152/japplphysiol.01177.2001

  • Olaya, V. (2004). A Gentle Introduction to SAGA GIS. The SAGA User Group eV, Göttingen, Germany.

  • Palmisano, A. (2017). Drawing Pathways from the Past: The Trade Routes of the Old Assyrian Caravans across Upper Mesopotamia and Central Anatolia. In Lebeau, M., Lopes, M. C., Milano, L., Otto, A., Sallaberger, W. & Van der Stede, V. (Eds.), Subartu. Kültepe International Meetings (KIM) (pp. 29–48). Brepols.

  • Panayot-Haroun, N. (2015). Anfeh unveiled. Historical Background, Ongoing Research, and Future Prospects. Journal of Eastern Mediterranean Archaeology and Heritage Studies, 3(4), 396–415. https://doi.org/10.5325/jeasmedarcherstu.3.4.0396

  • Petrini-Monteferri, F., Wichmann, V., Georges, C., Mantovani, D., & Stötter, J. (2009). Erweiterung der GIS Software SAGA zur Verarbeitung von Laserscanning-Daten der Autonomen Provinz Bozen-Südtirol. In J. Strobl, T. Blaschke, & G. Griesebner (Eds.), Angewandte Geoinformatik (pp. 47–52). Heidelberg.

  • Pfeifer, N., Mandlburger, G., Otepka, J., & Karel, W. (2014). OPALS – A framework for airborne laser scanning data analysis. Computers, Environment and Urban Systems, 45, 125–136. https://doi.org/10.1016/j.compenvurbsys.2013.11.002

  • Psomiadis, D., Dotsika, E., Albanakis, K., Ghaleb, B., & Hillaire-Marcel, C. (2018). Speleothem record of climatic changes in the northern Aegean region (Greece) from the Bronze Age to the collaps of the Roman Empire. Palaeogeography, Palaeoclimatology, Palaeoecology, 489, 272–283. https://doi.org/10.1016/j.palaeo.2017.10.021

  • Quinn, P., Beven, K., Chevallier, P., & Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5(1), 59–79. https://doi.org/10.1002/hyp.3360050106

  • Seifried, R. M., & Gardner, C. A. (2019). Reconstructing historical journeys with least-cost analysis: Colonel William Leake in the Mani Peninsula, Greece. Journal of Archaeological Science, Reports, 24, 391–411. https://doi.org/10.1016/j.jasrep.2019.01.014

  • Semaan, L. & Salama, M.S. (2019). Underwater Photogrammetric Recording at the Site of Anfeh, Lebanon. In McCarthy, J. K., Benjamin, J., Winton, T. & Van Duivenvoorde, W. (Eds.), 3D Recording and Interpretation for Maritime Archaeology (Coastal Research Library, Vol. 31, pp. 67–87). Springer International Publishing. https://doi.org/10.1007/978-3-030-03635-5_5

  • Semaan, L. (2015). New Insights into the Iron Age Timber Trade in Lebanon. In Ralph K. Pedersen (Ed.), On Sea and Ocean: New Research in Phoenician Seafaring. Proceedings of the Symposion Held in Marburg, June 23–25, 2011 at Archäologisches Seminar, Philipps-Universität Marburg (pp. 95-119). Marburg: Eigenverlag des Archäologischen Seminars der Philipps-Universität.

  • Skau, E. L. (1951). Simple Expressions for the Circularity and Fullness of Fibres. Textile Research Journal, 21(1), 14–17. https://doi.org/10.1177/004051755102100103

  • Štular, B., Kokalj, Ž., Oštir, K., & Nuninger, L. (2012). Visualization of lidar-derived relief models for detection of archaeological features. Journal of Archaeological Science, 39(11), 3354–3360. https://doi.org/10.1016/j.jas.2012.05.029

  • Tobler, W. (1993). ‘Non-isotropic geographic modeling’, Technical Report, 93(1), Available at: http://www.geodyssey.com/papers/tobler93.html (Accessed: 30 September 2019).

  • Verhagen, P., & Drăguţ, L. (2012). Object-based landform delineation and classification from DEMs for archaeological predictive mapping. Journal of Archaeological Science, 39(3), 698–703. https://doi.org/10.1016/j.jas.2011.11.001

  • Verhagen, P., & Jeneson, K. (2012). A Roman Puzzle. Trying to find the Via Belgica with GIS. In A. Chrysanthi, P. M. Flores, & C. Papadopoulos (Eds.), Thinking Beyond the Tool. Archaeological computing and the interpretive process (BAR International Series: Vol. 2344, pp. 123–130). Archaeopress.

  • Verhagen, P., & Whitley, T. G. (2012). Integrating Theory and Predictive Modeling: A Live Report from the Scene. Journal of Archaeological Method and Theory, 19(1), 49–100. https://doi.org/10.1007/s10816-011-9102-7

  • Vinci, G., & Bernardini, F. (2017). Reconstructing the protohistoric landscape of Trieste Karst (north-eastern Italy) through airborne LiDAR remote sensing. Journal of Archaeological Science, Reports, 12, 591–600. https://doi.org/10.1016/j.jasrep.2017.03.005

  • Walley, C. D. (1997). The litostratigraphy of Lebanon: A review. Lebanese Science Bulletin, 10(1), 81–107.

  • Wang, L., & Liu, H. (2006). An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science, 20(2), 193–213. https://doi.org/10.1080/13658810500433453

  • Wilson, J. P., & Gallant, J. C. (2000). Terrain Analysis. Principles and applications. New York: John Wiley & Sons, Inc.

  • Zakšek, K., Oštir, K., & Kokalj, Ž. (2011). Sky-View Factor as a Relief Visualization Technique. Remote Sensing, 3(2), 398–415. https://doi.org/10.3390/rs3020398

OPEN ACCESS

Journal + Issues

Search