Manual Point Cloud Classification and Extraction for Hunter-Gatherer Feature Investigation: A Test Case From Two Low Arctic Paleo-Inuit Sites

David B. Landry 1 , S. Brooke Milne 1 , Robert W. Park 2 , Ian J. Ferguson 3  and Mostafa Fayek 3
  • 1 Department of Anthropology, and the Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
  • 2 Department of Anthropology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
  • 3 Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada


For archaeologists, the task of processing large terrestrial laser scanning (TLS)-derived point cloud data can be difficult, particularly when focusing on acquiring analytical and interpretive outcomes from the data. Using our TLS lidar data collected in 2013 from two compositionally different, low Arctic multi-component hunter-gatherer sites (LdFa-1 and LeDx-42), we demonstrate how a manual point cloud classification approach with open source software can be used to extract natural and archaeological features from a site’s surface. Through a combination of spectral datasets typical to TLS (i.e., intensity and RGB values), archaeologists can enhance the visual and analytical representation of archaeological huntergatherer site surfaces. Our approach classifies low visibility Arctic site point clouds into independent segments, each representing a different surface material found on the site. With the segmented dataset, we extract only the surface boulders to create an alternate characterization of the site’s prominent features and their surroundings. Using surface point clouds from Paleo-Inuit sites allows us to demonstrate the value of this approach within hunter-gatherer research as our results illustrate an effective use of large TLS datasets for extracting and improving our analytical capabilities for low relief site features.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abbas, M. A., Luh, L. C., Setan, H., Majid, Z., Chong, A. K., Aspuri, A., Idris, K. M., & Ariff, M. F. M. (2014). Terrestrial laser scanners pre-processing: Registration and georeferencing. Jurnal Teknologi, 71(4), 115-122.

  • Bandyopadhyay, M., van Aardt, J. A. N., & Cawse-Nicholson, K. (2013). Classification and extraction of trees and buildings from urban scenes using discrete return LiDAR and aerial colour imagery. In: M. D. Turner, & G. W. Kamerman (Eds.), Laser Radar Technology and Applications XVIII, Proceedings of SPIE 2013, Vol. 8731, 873105.

  • Bielawski, E. (1988). Paleoeskimo variability: The early Arctic Small-Tool tradition in the central Canadian Arctic. American Antiquity, 53, 52-74.

  • Brodu, N., & Lague, D. (2012). 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 121-134.

  • Buckley, S. J., Kruz, T. H., Howell, J. A., & Schneider, D. (2013). Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis. Computers and Geosciences, 54, 249-258.

  • CloudCompare (version 2.6.1) [GPL software]. (2015). Retrieved from

  • Dawson, P. C., Bertulli, M. M., Levy, R., Tucker, C., Dick, L., & Cousins, P. L. (2013). Application of 3D laser scanning to the preservation of Fort Conger, a historic polar research base on northern Ellesmere Island, Arctic Canada. Arctic, 66(2), 147–158.

  • Friesen, T. M. (2015). On the naming of Arctic archaeological traditions: The case for Paleo-Inuit. Arctic, 68(3), iii-iv.

  • Güth, A. (2012). Using 3D scanning in the investigation of Upper Palaeolithic engravings: first results of a pilot study. Journal of Archaeological Science, 39(10), 3105-3114.

  • Hakonen, A., Kuusela, J-M., & Okkonen, J. (2015). Assessing the application of laser scanning and 3D inspection in the study of prehistoric carin sites: The case study of Tahkokangas, Northern Finland. Journal of Archaeological Science: Reports, 2, 227-234.

  • Huggett, J. (2015). Challenging Digital Archaeology. Open Archaeology, 1(1), 79-85.

  • Huimin, H., Yanmin, W., Chunmei, H., & Guoli, H. (2012). Application of terrestrial LiDAR technology in digital surveying and mapping of the Hall of Preserving Harmony of Forbidden City. Journal of Beijing University of Civil Engineering and Architecture, 3, 009.

  • Humair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J-L., & Jaboyedoff, M. (2015). Geological layers detection and characterisation using high resolution 3D point clouds: Example of a box-fold in the Swiss Jura Mountains. European Journal of Remote Sensing, 48, 541-568.

  • Isenburg, M. (2015). LAStools efficient tools for LiDAR processing. (Version 1.3). Retrieved from

  • Landry, D. B., Ferguson, I. J., Milne, S. B., & Park, R. W. (2015). Combined geophysical approach in a complex arctic archaeological environment: A case study from the LdFa-1 site, southern Baffin Island, Nunavut. Archaeological Prospection, 22(3), 157-170.

  • Larsen, B. P., Holdaway, S. J., Fanning, P. C., Mackrell, T., & Shiner J. I. (in press). Shape and an outcome of formation history: Terrestrial laser scanning of shell mounds from far north Queensland, Australia. Quaternary International, 1-8.

  • Lerma, J. L., Navarro, S., Cabrelles, M., & Villaverde, V. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: The Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37(3), 499-507.

  • Milne, S. B. (2003). Identifying Pre-Dorset structural features on southern Baffin Island: Challenges and considerations for alternative sampling methods. Inuit Studies, 27(1-2), 67-90.

  • Milne, S. B. (2005). Archaeological investigations in the Mingo and Amadjuak Lake districts of southern Baffin Island. Permit report covering the work conducted under Nunavut Territory Archaeologist Permit No. 04-06A. Nunavut Ministry of Culture, Language, Elders and Youth, Igloolik, Nunavut.

  • Milne, S. B. (2008). Archaeological investigations in the Mingo lake district of southern Baffin Island: Assessing Palaeo-Eskimo culture continuity and change. Permit report covering the work conducted under Nunavut Territory Archaeologist Permit No. 07-014. Department of Culture, Language, Elders and Youth, Government of Nunavut, Igloolik, Nunavut.

  • Milne, S. B. (2013). Chert sourcing and Palaeo-Eskimo stone tool technology. Permit report covering the work conducted under Nunavut Territory Archaeologist Permit No. 2013-02A. Department of Culture, Language, Elders and Youth, Government of Nunavut, Igloolik, Nunavut.

  • Milne, S. B., Park, R. W., & Stenton, D. R. (2012). Dorset culture land use strategies and the case of inland southern Baffin Island. Canadian Journal of Archaeology/Journal Canadien D’Archéologie, 36(2), 267-288.

  • Milne, S. B., Park, R. W., Fayek, M., Stenton, D. R., & Landry, D. B. (2013). Toolstone availability near Frobisher Bay, NU and its implications for Palaeo-Eskimo lithic technological organization. Proceedings of the Canadian Archaeological Association Conference 15-19 May 2013, Whistler, British Columbia. Canada.

  • Niemeyer, J., Rottensteiner, F., & Soergel, U. (2012). Conditional random fields for lidar point cloud classification in complex urban areas. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 1(3), 263-268.

  • Park, R. (2008). Archaeological excavations at the LdFa-1 site, Mingo lake, Baffin Island, Summer 2008 Permit report on work conducted under Nunavut Territory Archaeologist Permit No. 08-029A. University of Waterloo.

  • Penasa, L., Franceschi, M., Preto, N., Teza, G., & Polito, V. (2014). Integration of intensity textures and local geometry descriptors from terrestrial laser scanning to map chert in outcrops. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 88–97.

  • Reyes, R., Bellian, J., & Adams, E. W. (2009). Using statistical methods to correct lidar intensities from geological outcrops. Proceedings of the Digital Mapping ASPRS/MAPPS Annual Conference, 16-19 November 2009, San Antonio, Texas. United States of America.

  • Romero, B. E., & Bray. T. L. (2014). Analytical applications of fine-scale terrestrial lidar at the imperial Inca site of Caranqui, northern highland Ecuador. World Archaeology, 46(1), 25-42.

  • Rüther, H., Chazan, M., Schroeder, R., Neeser, R., Held, C., Walker, S. J., Matmon, A., & Horwitz, L. K. (2009). Laser scanning for conservation and research of African cultural heritage sites: the case study of Wonderwerk Cave, South Africa. Journal of Archaeological Science, 36(9), 1847-1856.

  • Schreiber, S., Hinzen, K. G., Fleischer, C., & Schütte, S. (2012). Excavation-parallel laser scanning of a medieval cesspit in the archaeological zone of Cologne, Germany. Journal on Computing and Cultural Heritage, 5(3), 12.

  • Song, J-H., Han, S-H., Yu, K. Y., & Kim, Y-I. (2002). Assessing the possibility of land-cover classification using lidar intensity data. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/B), 259-262.

  • Stenton, D. R. (1991). The archaeology of terrestrial hunting systems: The Amadjuak Lake Project. Permit report on file with the Department of Culture, Elders, Language, and Youth. Government of Nunavut. Igloolik: Nunavut.

  • Watterson, A. (2015). Beyond digital dwelling: re-thinking interpretive visualisation in Archaeology. Open Archaeology, 1, 119-130.


Journal + Issues