Exploring the Utility of Bathymetry Maps Derived With Multispectral Satellite Observations in the Field of Underwater Archaeology

Radoslaw Guzinski 1 , 2 , Elias Spondylis 3 , Myrto Michalis 3 , Sebastiano Tusa 4 , Giacoma Brancato 4 , Lorenzo Minno 5  and Lars Boye Hansen 2
  • 1 European Space Agency, ESA Centre for Earth Observation (ESRIN), Via Galileo Galilei, Casella Postale 64, 00044 Roma, Italy
  • 2 DHI-GRAS, Agern Alle 5, DK-2970 Hørsholm, Denmark
  • 3 Hellenic Institute of Marine Archaeology (H.I.M.A.), Saripolou 9st, Athens 106 82, Greece
  • 4 Regione Siciliana, Dipartimento dei Beni Culturali e dell’Identità Siciliana, Soprintendenza del mare, Via Lungarini 9, 90133 Palermo, Italy
  • 5 Codevintec Italiana srl, via Labus 13, 20147 Milano, Italy

Abstract

Bathymetry maps derived with satellite-based multispectral sensors have been used extensively for environmental and engineering coastal studies and monitoring. However, so far this technique has not been widely exploited in other coastal applications, such as underwater archaeology. Submerged settlements and shipwrecks are often located in water depths where the application of multispectral satellite data is feasible. This could lead to more efficient field work practices thus enabling more optimal allocations of costs and labour during archaeological excavations. This study explores the contribution of processed satellite bathymetry maps to the recording of two archaeological coastal sites: a submerged prehistoric settlement in Greece and a shipwreck of a modern cargo vessel in Italy. The results indicate that even though the accuracy of satellite derived bathymetry is high, the level of detail (spatial resolution) is not sufficient to fully replace field-based measurements. However, the use of satellite data complements the existing techniques and can help to place the archaeological sites within a broader spatial context as well as to efficiently monitor the deterioration of a site due to natural causes or human activity, which inevitably leads to risk management. When the study of larger objects is involved (for example First World War shipwrecks) the potential of using satellite data in underwater archaeological studies becomes more promising.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Allotta, B., Costanzi, R., Ridolfi, A., Colombo, C., Bellavia, F., Fanfani, M., … Daviddi, W. (2015). The ARROWS project: adapting and developing robotics technologies for underwater archaeology. IFAC-PapersOnLine, 48(2), 194–199. http://doi.org/10.1016/j.ifacol.2015.06.032

  • Babits, L. E., & Van Tilburg, H. (1998). Maritime Archaeology: A Reader of Substantive and Theoretical Contributions (Vol. 1). Springer Science & Business Media. Retrieved from https://books.google.nl/books?hl=en&lr=&id=G9dcDFAn_LcC&oi=fnd&pg=PA1&ots=NW5jqQyVXY&sig=KuS5iIvcgmPhMjQXMG50F06rEaQ

  • Barron, J. P., & Taylor, J. du P. (1966). Marine Archaeology: Developments during Sixty Years in the Mediterranean. Retrieved from http://philpapers.org/rec/BARMAD-2

  • Bass, G. F. (1966). Archaeology under water. Retrieved from http://www.bcin.ca/Interface/openbcin.cgi?submit=submit&Chinkey=61873

  • Büyüksalih, G., Baz, I., Alkan, M., & Jacobsen, K. (2012). DEM generation with WorldView-2 images. In ISPRS Symposium Melbourne. Retrieved from http://www.ipi.uni-hannover.de/uploads/tx_tkpublikationen/isprsarchives-XXXIX-B1-203-2012.pdf

  • Carder, K. L., Chen, F. R., Cannizzaro, J. P., Campbell, J. W., & Mitchell, B. G. (2004). Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Advances in Space Research, 33(7), 1152–1159.

  • Chen, G., & Qian, S.-E. (2011). Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. Geoscience and Remote Sensing, IEEE Transactions on, 49(3), 973–980.

  • Dekker, A. G., Phinn, S. R., Anstee, J., Bissett, P., Brando, V. E., Casey, B., … others. (2011). Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnology and Oceanography: Methods, 9(9), 396–425.

  • Doneus, M., Doneus, N., Briese, C., Pregesbauer, M., Mandlburger, G., & Verhoeven, G. (2013). Airborne laser bathymetry – detecting and recording submerged archaeological sites from the air. Journal of Archaeological Science, 40(4), 2136–2151. http://doi.org/10.1016/j.jas.2012.12.021

  • Fasbender, D., Radoux, J., & Bogaert, P. (2008). Bayesian data fusion for adaptable image pansharpening. Geoscience and Remote Sensing, IEEE Transactions on, 46(6), 1847–1857.

  • Frost, H. (1963). Under the Mediterranean: marine antiquities. London, Routledge and K. Paul 1963.

  • Gao, J. (2009). Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103–116.

  • Garcia, R. A., Fearns, P. R., & McKinna, L. I. (2014). Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia. Remote Sensing of Environment, 147, 186–205.

  • Gkionis, P. (2013). The GE.N.ESIS Project - Georeferenced Depiction and Synthesis of Marine Archaeological Survey Data in Greece. The International Hydrographic Review, (9). Retrieved from https://journals.lib.unb.ca/index.php/ihr/article/view/22816

  • Green, J. (1990). Maritime archaeology: a technical handbook. Academic Press Ltd. Retrieved from http://www.bcin.ca/Interface/openbcin.cgi?submit=submit&Chinkey=107504

  • Hedley, J. D., Harborne, A. R., & Mumby, P. J. (2005). Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos. International Journal of Remote Sensing, 26(10), 2107–2112.

  • Hedley, J., Roelfsema, C., & Phinn, S. R. (2009). Efficient radiative transfer model inversion for remote sensing applications. Remote Sensing of Environment, 113(11), 2527–2532.

  • King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B.-C., Platnick, S., … Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. Geoscience and Remote Sensing, IEEE Transactions on, 41(2), 442–458.

  • Klonowski, W. M., Fearns, P. R., & Lynch, M. J. (2007). Retrieving key benthic cover types and bathymetry from hyperspectral imagery. Journal of Applied Remote Sensing, 1(1), 011505–011505.

  • Kraft, D., & others. (1988). A software package for sequential quadratic programming. DFVLR Obersfaffeuhofen, Germany. Retrieved from http://www.opengrey.eu/item/display/10068/147127

  • Kutser, T., Vahtmäe, E., & Metsamaa, L. (2006). Spectral library of macroalgae and benthic substrates in Estonian coastal waters. Proc. Estonian Acad. Sci. Biol. Ecol, 55(4), 329–340.

  • Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1998). Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied Optics, 37(27), 6329–6338.

  • Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1999). Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. Applied Optics, 38(18), 3831–3843.

  • Linder, E., & Raban, A. (1975). Marine archaeology (Vol. 7). Cassell. Retrieved from http://www.openbibart.fr/item/display/10068/1138603

  • Lyzenga, D. R. (1985). Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 6(1), 115–125. http://doi.org/10.1080/01431168508948428

  • Lyzenga, D. R., Malinas, N. P., & Tanis, F. J. (2006). Multispectral bathymetry using a simple physically based algorithm. Geoscience and Remote Sensing, IEEE Transactions on, 44(8), 2251–2259.

  • Maarleveld, T. J., Guérin, U., & Egger, B. (2013). Manual for Activities directed at Underwater Cultural Heritage: guidelines to the Annex of the UNESCO 2001 Convention. Unesco. Retrieved from https://books.google.nl/books?hl=en&lr=&id=yqy9YOi3uzQC&oi=fnd&pg=PA14&dq=Manual+for+Activities+directed+at+Underwater+Cultural+Heritage.+Guidelines+to+the+Annex+of+the+UNESCO+2001+Convention&ots=31w4Ryv5-S&sig=X6E4d5cuOXwDPb4LN2dbbA_TTbw

  • Michalis, M., & Spondylis, E. (2012). Ten Years of Underwater Archaeological Research at the West Coast of the South Pagasetikos Gulf. In Proceedings of the “4th Archaeological Meeting of Thessaly and Central Greece, 2009-2011. From Prehistory to the Contemporary Period.” Volos 15 - 18 March: University of Thessaly.

  • Momber, G., & Bowens, A. (2015). The Atlas of the 2 Seas and the First World War Forgotten Wrecks Projects: Innovative Methods of Underwater Cultural Heritage Research, Presentation and Dissemination. In Underwater cultural heritage from World War I: proceedings of the Scientific Conference on the Occasion of the Centenary of World War I, Bruges, Belgium, 26 & 27 June 2014 (p. 183). UNESCO Publishing. Retrieved from https://www.google.com/books?hl=en&lr=&id=5WzuCgAAQBAJ&oi=fnd&pg=PA183&dq=first+world+war+shipwrecks+unesco&ots=oKyocMc9P-&sig=iEkJFPok_oepbVwXeNFuI3rkJrE

  • Muckelroy, K. (1978). Maritime archaeology. Cambridge University Press. Retrieved from https://books.google.nl/books?hl=en&lr=&id=rvRKwa78s48C&oi=fnd&pg=PA3&dq=Maritime+Archaeology&ots=bKjdappI0t&sig=xxGpecEFDNou6osi0VWAqXdx7U4

  • Muslim, A. M., & Foody, G. M. (2008). DEM and bathymetry estimation for mapping a tide-coordinated shoreline from fine spatial resolution satellite sensor imagery. International Journal of Remote Sensing, 29(15), 4515–4536.

  • Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 36(33), 8710–8723.

  • Puetz, A. M., Lee, K., & Olsen, R. C. (2009). WorldView-2 data simulation and analysis results (Vol. 7334, p. 73340U–73340U–9). http://doi.org/10.1117/12.818187

  • Smith, R. C., & Baker, K. S. (1981). Optical properties of the clearest natural waters (200–800 nm). Applied Optics, 20(2), 177–184.

  • Spondylis, E. (1996a). Contribution to a Study of the Configuration at the Coast of Pylia, based on the Location of New Archaeological Sites. In Archaeoseismology (pp. 119–128). Oxford: British School of Athens.

  • Spondylis, E. (1996b). Symvoli sti Meleti Diamorfosis ton Akton tis Pylias me vasi ton Entopismo Neon Archaiologikon Theseon. Enalia, IV(3/4), 30–37.

  • Spondylis, E. (1999). Methoni. Archaiologiko Deltion, 54(Annual B’ 2), 1025–1028.

  • Spondylis, E. (2012). IENAE’s Underwater Archaeological Research in the Pagasetikos Gulf (2009-2011). In Proceedings of the “4th Archaeological Meeting of Thessaly and Central Greece, 2009-2011. From Prehistory to the Contemporary Period.” Volos 15 - 18 March: University of Thessaly.

  • Spondylis, E. (2015). Pavlopetri. In Proceedings of the International Conference “Voutia sta Perasmena. Ypovryhia Archaiologiki Erevna 1975-2014.” Athens: Greek Ephorate of Underwater Antiquities.

  • Throckmorton, P. (1977). Diving/or Treasure. Viking Press, New York.

  • UNESCO. (2015). Underwater cultural heritage from World War I: proceedings of the Scientific Conference on the Occasion of the Centenary of World War I, Bruges, Belgium, 26 & 27 June 2014. UNESCO Publishing.

  • Vermote, E., Tanré, D., Deuzé, J. L., Herman, M., Morcrette, J. J., & Kotchenova, S. Y. (2006). Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3. Retrieved from ftp://loa.univ-lille1.fr/6S/6S_Manual_Part_1.pdf.gz

  • Wales, D. J., & Scheraga, H. A. (1999). Global optimization of clusters, crystals, and biomolecules. Science, 285(5432), 1368–1372.

  • Wilkes, B. S. J. (1971). Nautical Archaeology: A Handbook. Newton Abbot, David & Charles.

OPEN ACCESS

Journal + Issues

Search