Influence of chemical structure of branched and dendritic organosilicon luminophores on their optical and thermal properties

Oleg V. Borshchev 1 , Elena A. Kleymyuk 1 , Nikolay M. Surin 1 , Evgeniya A. Svidchenko 1 , Yuriy V. Fedorov 2 , Petr V. Dmitryakov 3 , Sergei N. Chvalun 3  and Sergei A. Ponomarenko 4
  • 1 Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Moscow, Russian Federation
  • 2 Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russian Federation
  • 3 National Research Center “Kurchatov Institute”, Akademika Kurchatova, Moscow, Russian Federation
  • 4 Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Moscow, Russian Federation

Abstract

Synthesis and investigation of optical and thermal properties of a homologous series of highly luminescent nanostructured organosilicon luminophores (NOLs) containing different donor to acceptor ratio (D:A) are reported. Each of the NOL consists of a 1,4-bis(5-phenylthienyl-2-yl)benzene (PTPTP) acceptor unit and four, six or twelve 2,2′-bithienyl donor fragments connected to each other through two or six silicon atoms. These complex molecules show a “molecular antenna” effect with high efficiency of intramolecular energy transfer about 97-98% combined with excellent photoluminescence (PL) quantum yield of 84-91% and fast PL decay time of 0.90-0.95 ns. A significant increase of the molar extinction coefficient from 94 000 to 257 000 M−1cm−1 with increasing the D:A ratio from 4:1 to 12:1 was observed. It was found that increasing the branching extent in the NOLs prohibits their crystallization. Thermal gravimetric analysis (TGA) showed that all the NOLs reported, regardless of their branching extent, are thermally stable up to 455 °C under nitrogen. These characteristics make them promising materials for various organic photonics applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S.A. Ponomarenko, S. Kirchmeyer, Conjugated Organosilicon Materials for Organic Electronics and Photonics, Chapter in “Organosilicon Polymers”, Ed. by A.M. Muzafarov, Book series: Advances in Polymer Science, Springer, Berlin, 235, 2011, 33.

  • [2] A.J. C. Kuehne and M. C. Gather, Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques, Chem. Rev. 116, 2016, 12823.

  • [3] S. B. Darling and F. You, The case for organic photovoltaics, RSC Adv. 3, 2013, 17633.

  • [4] M. Heilemann, S. van de Linde, A. Mukherjee and M. Sauer, Super-resolution imaging with small organic fluorophores, Angew. Chem. Int. Ed. 48, 2009, 6903.

  • [5] J. Fan, M. Hu, P. Zhana and X. Peng, Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing, Chem. Soc. Rev. 42, 2013, 29.

  • [6] Q. Zheng, M. F. Juette, S. Jockusch, M. R. Wasserman, Z. Zhou, R. B. Altman and S. C. Blanchard, Ultra-stable organic fluorophores for single-molecule research, Chem. Soc. Rev. 43, 2014, 1044.

  • [7] J. A. Brown, B. L. Goldblum, L. A. Bernstein, et.al., Relative light yield and temporal response of a stilbene-doped bibenzyl organic scintillator for neutron detection, J. Appl. Phys. 115, 2014, 193504.

  • [8] H. Tang, L. Zhu, Y. Harima, K. Yamashita, J. Ohshita, A. Kunai, Photophysical properties of σ- π-conjugated alternating oligothienylene-oligosilylene polymers, J. Polym. Sci. B Polym. Phys. 37, 1999, 1873.

  • [9] H. Tang, L. Zhu, Y. Harima, K. Yamashita, K. K. Lee, A. Naka, and M. Ishikawa, Strong fluorescence of nano-size star-like molecules, J. Chem. Soc., Perkin Trans. 2, 2000, 1976.

  • [10] M. Ishikawa, K.K. Lee, W. Schneider, A. Naka, T. Yamabe, Y. Harima, and T. Takeuchi, Synthesis and Properties of Nanosize Starlike Silicon Compounds, Organometallics, 19, 2000, 2406.

  • [11] E. A. Shumilkina, O. V. Borshchev, S. A. Ponomarenko, N. M. Surin, A. P. Pleshkova and A. M. Muzafarov, Synthesis and optical properties of linear and branched bithienylsilanes, Mendeleev Commun. 17, 2007, 34.

  • [12] J. Nakayama and J.-S. Lin, An organosilicon dendrimer composed of 16 thiophene rings, Tetrahedron Lett. 38, 1997, 6043.

  • [13] S.A. Ponomarenko, A.M. Muzafarov, O.V. Borschev, E.A. Vodopianov, N.V. Demchenko, V.D. Myakushev, Synthesis of bithiophenesilane dendrimer of the first generation, Russ. Chem. Bull. 57, 2005, 684.

  • [14] O.V. Borshchev, S. A. Ponomarenko, E. A. Kleymyuk, Y. N. Luponosov, N. M. Surin, A. M. Muzafarov, Branched oligothiophene silanes with the eflcient nonradiative energy transfer between the fragments, Russ. Chem. Bull. 59, 2010, 797.

  • [15] O.V. Borshchev, S.A. Ponomarenko, N.M. Surin, M.I. Buzin, A.P. Pleshkova, N.V. Demchenko, V.V. Myakushev, A.M. Muzafarov, Bithiophenesilane Dendrimers:? Synthesis and Thermal and Optical Properties, Organometallics, 26, 2007, 5165.

  • [16] J. Ohshita, Group 14 metalloles condensed with heteroaromatic systems, Org. Photonics Photovolt. 4, 2016, 52.

  • [17] S.A. Ponomarenko, N.M. Surin, O.V. Borshchev, Y.N. Luponosov, D.Y. Akimov, I.S. Alexandrov, A.A. Burenkov, A.G. Kovalenko, V.N. Stekhanov, E.A. Kleymyuk, O.T. Gritsenko, G.V. Cherkaev, A.S. Kechek’yan, O.A. Serenko, A.M. Muzafarov, Nanostructured organosilicon luminophores and their application in highly eflcient plastic scintillators, Sci. Rep. 10, 2014, 6549.

  • [18] S.A. Ponomarenko, N.M. Surin, O.V. Borshchev, M.S. Skorotetcky, A.M. Muzafarov, Nanostructured organosilicon luminophores as a new concept of nanomaterials for highly eflcient down-conversion of light, Proc. SPIE, 9545, 2015, 954509-1

  • [19] Z. F. Xu, J. S. Moore, Design and Synthesis of a Convergent and Directional Molecular Antenna, Acta Polym. 45, 1994, 83.

  • [20] Y.N. Luponosov, S.A. Ponomarenko, N.M. Surin, O.V. Borshchev, E.A. Shumilkina, A.M. Muzafarov, First Organosilicon Molecular Antennas, Chem. Mater. 21, 2009, 447.

  • [21] Y. N. Luponosov, N.M. Surin, D.K. Susarova, M.I. Buzin, D.V. Anokhin D.A. Ivanov, P.A. Troshin, S.A. Ponomarenko, Nanostructured Organosilicon Luminophores for Effective Light Conversion in Organic Light Emitting Diodes, Org. Photonics Photovolt. 3, 2015, 148.

  • [22] T. Uekert, A. Solodovnyk, S. Ponomarenko, A. Osvet, I. Levchuk, J. Gast, M. Batentschuk, K. Forberich, E. Stern, H.- J. Egelhaaf, C.J. Brabec, Nanostructured organosilicon luminophores in highly eflcient luminescent down-shifting layers for thin film photovoltaics, Solar Energy Materials & Solar Cells, 2016, 155, 1.

  • [23] S.A. Lee, S. Hotta and F. Nakanishi, Spectroscopic Characteristics and Intermolecular Interactions of Thiophene/Phenylene Co-Oligomers in Solutions, J. Phys. Chem. A, 104, 2000, 1827.

  • [24] T. Yamao, Y. Taniguchi, K. Yamamoto, T. Miki, S. Ota, S. Hotta, M. Goto and R. Azumi, Anisotropic Refractive Indices of Organic Crystals of Thiophene/Phenylene Co-Oligomers Determined by Microspectroscopic Measurements, Jpn. J. Appl. Phys. 46, 2007, 7478.

  • [25] S. Hotta and T. Yamao, The thiophene/phenylene cooligomers: exotic molecular semiconductors integrating highperformance electronic and optical functionalities, J. Mater. Chem. 21, 2011, 1295.

  • [26] T. Yu. Starikova, N. M. Surin, O. V. Borshchev, S. A. Pisarev, E. A. Svidchenko, Yu., V. Fedorov and S. A. Ponomarenko, A Novel Highly Eflcient Nanostructured Organosilicon Luminophore with Unusually Fast Photoluminescence, J. Mater. Chem. C, 4, 2016, 4699.

  • [27] N. M. Surin, O.V. Borshchev, Yu. N. Luponosov, S. A. Ponomarenko, A. M. Muzafarov, Luminescence spectral properties of dendritic oligothiophenesilane macromolecules, Russ. J. Phys. Chem. 84, 2010, 1979.

  • [28] Petrov M. and Pichugov R., First International School on Organic Electronics in Russia (IFSOE 2014). Org. Photonics Photovolt., 3, 2015, 145.

OPEN ACCESS

Journal + Issues

Organic Photonics and Photovoltaics (OPP) is an international, peer-reviewed journal publishing original research and reviews in the field of organic materials synthesis, fundamental opto-electronic properties, new fabrication approaches for applications in high performance photonic devices. OPP welcomes theoretical and experimental papers on all aspects ranging from fundamental sciences to commercial applications.

Search