Novel Approaches in the Design of Donor-Acceptor Oligomeric and Polymeric Materials for Photovoltaic Applications: D/A Blend versus Self-assembly of D/A by Covalent or Non-Covalent Interaction

Nagesh B. Kolhe, Shekhar Shinde, B. Saibal, and S. K. Asha
  • 1 Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
  • 2 Academy of Scientific and Innovative Research, New Delhi, India
  • 3 CSIR-Network Institutes of Solar Energy, New Delhi, India

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Y. Lin, Y. Li and X. Zhan, Small molecule semiconductors for high-eflciency organic photovoltaics, Chem. Soc. Rev. 41, 2012, 4245.

  • [2] Y. Chen, X. Wan and G. Long, High Performance Photovoltaic Applications Using Solution-Processed Small Molecules, Acc. Chem. Res. 46, 2013, 2645.

  • [3] S. Günes, H. Neugebauer and N.S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells, Chem. Rev. 107, 2007, 1324.

  • [4] Y. Liang and L. Yu, A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cellswith Exceptionally High Performance, Acc. Chem. Res. 43, 2010, 1227.

  • [5] C. Li, M. Liu, N.G. Pschirer, M. Baumgarten and K. Müllen, Polyphenylene-Based Materials for Organic Photovoltaics, Chem. Rev. 110, 2010, 6817.

  • [6] B.C. Thompson and J.M.J. Fréchet, Polymer–Fullerene Composite Solar Cells, Angew. Chem. Int. Ed. 47, 2008, 58.

  • [7] A. Facchetti, Polymer donor–polymer acceptor (all-polymer) solar cells, Materials Today 16, 2013, 123.

  • [8] Harald Hoppe and N.S. Sariciftci, Polymer Solar Cells, Springer-Verlag Berlin Heidelberg, 2008.

  • [9] C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 1986, 183.

  • [10] M.A. Green, K. Emery, Y. Hishikawa, W. Warta and E.D. Dunlop, Solar cell eflciency tables (version 42), Prog. Photovolt: Res. Appl. 21, 2013, 827.

  • [11] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li and Y. Yang, A polymer tandem solar cell with 10.6% power conversion eflciency, Nat, Commun. 4, 2013, 1446.

  • [12] L. Ye, S. Zhang, W. Zhao, H. Yao and J. Hou, Highly Eflcient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain, Chem. Mater. 26, 2014, 3603.

  • [13] Y. Liu, C.-C. Chen, Z. Hong, J. Gao, Y. Yang, H. Zhou, L. Dou, G. Li and Y. Yang, Solution-processed small-molecule solar cells: breaking the 10% power conversion eflciency, Sci. Rep. 3, 2013, 3356.

  • [14] Y. Huang, E.J. Kramer, A.J. Heeger and G.C. Bazan, Bulk Heterojunction Solar Cells: Morphology and Performance Relationships, Chem. Rev. 114, 2014, 7006.

  • [15] S.A. Jenekhe and S. Yi, Eflcient photovoltaic cells from semiconducting polymer heterojunctions, Appl. Phys. Lett. 77, 2000, 2635.

  • [16] G. Yu, J. Gao, J.C. Hummelen, F. Wudl and A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Eflciencies via a Network of Internal Donor-Acceptor Heterojunctions, Science 270, 1995, 1789.

  • [17] X. Yang, J.K.J. Van Duren, R.A.J. Janssen, M.A.J. Michels and J. Loos, Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices, Macromolecules 37, 2004, 2151.

  • [18] A. Sharenko, D. Gehrig, F. Laquai, and T.-Q Nguyen, The Effect of Solvent Additive on the Charge Generation and Photovoltaic Performance of a Solution-Processed Small Molecule: Perylene Diimide Bulk Heterojunction Solar Cell, Chem.Mater. 26, 2014, 4109.

  • [19] J. Peet, J.Y. Kim, N.E. Coates,W.L.Ma, D. Moses, A.J. Heeger and G.C. Bazan, Eflciency Enhancement in Low Bandgap Polyme Solar Cell by Processing with Alkyl Dithiols, Nature Mat. 6, 2007, 497.

  • [20] J.U. Lee, J.W. Jung, T. Emrick, T.P. Russell and W.H. Jo, Synthesis of C60-end Capped P3HT and its Application for High Performance of P3HT/PCBM Bulk Heterojunction Solar Cells, J. Mat. Chem. 20, 2010, 3287.

  • [21] K. Sivula, Z.T. Ball, N. Watanabe, and J.M.J. Fréschet, Amphiphilic Diblock Copolymer Compatibilizers and their Effect on the Morphology and Performance of Polythiophene: Fullerene Solar Cells, Adv. Mater. 18, 2006, 206.

  • [22] Philip A. Gale and J.W. Steed, Supramolecular Chemistry: From Molecules to Nanomaterials, John Wiley & Sons, Ltd, 2012.

  • [23] P.D. Topham, A.J. Parnell and R.C. Hiorns, Block copolymer strategies for solar cell technology, J. Polym. Sci. Part B; Polym. Phys. 49, 2011, 1131.

  • [24] R.A. Segalman, B. Mcculloch, S. Kirmayer and J.J. Urban, Block Copolymers for Organic Optoelectronics, Macromolecules 42, 2009, 9205.

  • [25] S.-S. Sun, Design of a block copolymer solar cell, Sol. Energy Mater. Sol. Cells 79, 2003, 257.

  • [26] K. Nakabayashi and H. Mori, Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications,Materials 7, 2014, 3274.

  • [27] T. Xu and L. Yu, Howto design lowbandgap polymers for highly eflcient organic solar cells, Materials Today 17, 2014, 11.

  • [28] Y. Li, Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption, Acc. Chem. Res. 45, 2012, 723.

  • [29] Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray and L. Yu, Highly Eflcient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties, J. Am. Chem. Soc. 131, 2009, 7792.

  • [30] Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li and L. Yu, Development of New Semiconducting Polymers for High Performance Solar Cells, J. Am. Chem. Soc. 131, 2008, 56.

  • [31] P. Cheng, L. Ye, X. Zhao, J. Hou, Y. Li and X. Zhan, Binary additives synergistically boost the eflciency of all-polymer solar cells up to 3.45%, Energy & Environmental Science 7, 2014, 1351.

  • [32] H. Kang, K.-H. Kim, J. Choi, C. Lee and B.J. Kim, High- Performance All-Polymer Solar Cells Based on Face-On Stacked Polymer Blends with Low Interfacial Tension, ACS Macro Lett. 3, 2014, 1009.

  • [33] Y.-J. Hwang, T. Earmme, S. Subramaniyan and S.A. Jenekhe, Side chain engineering of n-type conjugated polymer enhances photocurrent and eflciency of all-polymer solar cells, Chem. Commun. 50, 2014, 10801.

  • [34] Q. Xie, E. Perez-Cordero and L. Echegoyen, Electrochemical detection of C606- and C706-: Enhanced stability of fullerides in solution, J. Am. Chem. Soc. 114, 1992, 3978.

  • [35] P.H. Wöbkenberg, D.D.C. Bradley, D. Kronholm, J.C. Hummelen, D.M. De Leeuw, M. Cölle and T.D. Anthopoulos, High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives, Synth. Met. 158, 2008, 468.

  • [36] N.C. Cates, R. Gysel, Z. Beiley, C. E. Miller, M.F. Toney, M. Heeney, I. Mcculloch and M.D. Mcgehee, Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation, Nano Lett. 9, 2009, 4153.

  • [37] X. Zhao and X. Zhan, Electron transporting semiconducting polymers in organic electronics, Chem. Soc. Rev. 40, 2011, 3728.

  • [38] Y. Wen and Y. Liu, Recent Progress in n-Channel Organic Thin- Film Transistors, Adv. Mater. 22, 2010, 1331.

  • [39] F. Wurthner and M. Stolte, Naphthalene and perylenediimides for organic transistors, Chem. Commun. 47, 2011, 5109.

  • [40] X. Zhan, A. Facchetti, S. Barlow, T.J. Marks, M.A. Ratner, M.R. Wasielewski and S.R.Marder, Rylene and Related Diimides for Organic Electronics, Adv. Mater. 23, 2011, 268.

  • [41] E. Zhou, M. Nakano, S. Izawa, J. Cong, I. Osaka, K. Takimiya and K. Tajima, All-Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide (NDTI) Copolymer, ACS Macro Lett. 3, 2014, 872.

  • [42] H.C. Hesse, J. Weickert, C. Hundschell, X. Feng, K. Müllen, B. Nickel, A.J. Mozer and L. Schmidt-Mende, Perylene Sensitization of Fullerenes for Improved Performance in Organic Photovoltaics, Adv. Energy Mater. 1, 2011, 861.

  • [43] J. Sakamoto, M. Rehahn, G. Wegner and A. D. Schlüter, Suzuki Polycondensation: Polyarylenes á la Carte, Mocromol. Rapid Commun. 30, 2009, 653.

  • [44] Z. Bao, W.K. Chan and L. Yu, Exploration of the Stille Coupling Reaction for the Synthesis of Functional Polymers, J. Am. Chem. Soc. 117, 1995, 12426.

  • [45] J. Schmidt, M. Werner and A. Thomas, Conjugated Microporous Polymer Networks via Yamamoto Polymerization,Macromolecules 42, 2009, 4426.

  • [46] J.-C. Lim, M. Suzuki and T. Saegusa, Synthesis of functional polymers containing distyrylthiophene moiety using the heck reaction, Polym. Bull. 31, 1993, 651.

  • [47] A. Drury, S. Maier, M. Ruther and W. J. Blau, Investigation of different synthetic routes to and structure-property relationships of poly(m-phenylenevinylene-co-2,5-dioctyloxy-pphenylenevinylene), J. Mater. Chem. 13, 2003, 485.

  • [48] A. Balamurugan, M.L.P. Reddy and M. Jayakannan, Single Polymer Photosensitizer for Tb3+ and Eu3+ Ions: An Approach for White Light Emission Based on Carboxylic-Functionalized Poly(m-phenylenevinylene)s, J. Phys. Chem. B 113, 2009, 14128.

  • [49] A. Balamurugan, M.L.P. Reddy and M. Jayakannan, [small pi]- Conjugated polymer-Eu3+ complexes: versatile luminescent molecular probes for temperature sensing, J. Mater. Chem. A 1, 2013, 2256.

  • [50] M.C. Stefan, M.P. Bhatt, P. Sista and H.D. Magurudeniya, Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly(3- hexylthiophene), Polym. Chem. 3, 2012, 1693.

  • [51] M.C. Iovu, E.E. Sheina and R.D. Mccullough, Grignard Metathesis (GRIM) Method for the Synthesis of Regioregular Poly(3- alkylthiophenes) with Well-defined Molecular Weights Polymer Preprints 46, 2005, 660.

  • [52] S. Huttner, M. Sommer, A. Chiche, G. Krausch, U. Steiner and M. Thelakkat, Controlled solvent vapour annealing for polymer electronics, Soft Matter 5, 2009, 4206.

  • [53] J.W. Jung, J.W. Jo, C.-C Chueh, F. Liu, W.H. Jo, T.P. Rusell and A.K.-Y. Jen, Fluoro Substituted n-Type Conjugated Polymers for Additive Free All Polymer Bulk Heterojunction Solar Cells with High Power Conversion Eflciency of 6.71%, Adv. Mater, (in press) DOI:10.1002/adma.201501214.

  • [54] J.A. Mikroyannidis, M.M. Stylianakis, G.D. Sharma, P. Balraju and M.S. Roy, A Novel Alternating Phenylenevinylene Copolymer with Perylene Bisimide Units: Synthesis, Photophysical, Electrochemical, and Photovoltaic Properties, J. Phys. Chem. C 113, 2009, 7904.

  • [55] X. Zhan, Z.A. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen and S.R. Marder, A High-Mobility Electron- Transport Polymer with Broad Absorption and Its Use in Field- Effect Transistors and All-Polymer Solar Cells, J. Am. Chem. Soc. 129, 2007, 7246.

  • [56] Z.A. Tan, E. Zhou, X. Zhan, X. Wang, Y. Li, S. Barlow and S.R. Marder, Eflcient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylenediimide-alt-bis(dithienothiophene)], Appl. Phys. Lett. 93, 2008, 073309.

  • [57] E. Kozma, D. Kotowski, F. Bertini, S. Luzzati and M. Catellani, Synthesis of donor–acceptor poly(perylenediimidealtoligothiophene) copolymers as n-type materials for polymeric solar cells, Polymer 51, 2010, 2264.

  • [58] E. Zhou, J. Cong, Q. Wei, K. Tajima, C. Yang and K. Hashimoto, All-Polymer Solar Cells from PeryleneDiimide Based Copolymers: Material Design and Phase Separation Control, Angew. Chem. Int. Ed. 50, 2011, 2799.

  • [59] Y. Zhou, Q. Yan, Y.-Q. Zheng, J.-Y.Wang, D. Zhao and J. Pei, New polymer acceptors for organic solar cells: the effect of regioregularity and device configuration, J. Mater. Chem. A 1, 2013, 6609.

  • [60] C.-W Ge, C.-Y Mei, J. Ling, J.-T Wang, F.-G Zhao, L. Liang, H.- J Li, Y.-S Xie, W.-S Li, Acceptor-Acceptor Conjugated Copolymers Based on Perylene Diimide and Benzothiadiazole for All- Polymer Solar Cells, J. Polym. Sci. Part-A: Polym. Chem. 52, 2014, 1200.

  • [61] L.M. Kozycz, D. Gao, A.J. Tilley and D.S. Seferos, One Donor- Two Acceptor (D-A1)-(D-A2) Random Terpolymers Containing Perylene diimide, Naphthalene Diimide and Carbazole, J. Polym. Sci. Part-A: Polym. Chem. 52, 2014, 3337.

  • [62] X. Guo and M.D. Watson, Conjugated Polymers from Naphthalene Bisimide, Org. Lett. 10, 2008, 5333.

  • [63] H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn, F. Dotz, M. Kastler and A. Facchetti, A high-mobility electron-transporting polymer for printed transistors, Nature 457, 2009, 679.

  • [64] K. Szendrei, D. Jarzab, Z. Chen, A. Facchetti and M.A. Loi, Ambipolar all-polymer bulk heterojunction field-effect transistors, J. Mater. Chem. 20, 2010, 1317.

  • [65] S. Fabiano, Z. Chen, S. Vahedi, A. Facchetti, B. Pignataro and M.A. Loi, Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells, J.Mater. Chem. 21, 2011, 5891.

  • [66] J.R. Moore, S. Albert-Seifried, A. Rao, S. Massip, B. Watts, D.J. Morgan, R.H. Friend, C.R. Mcneill and H. Sirringhaus, Polymer Blend Solar Cells Based on a High-Mobility Naphthalenediimide-Based Polymer Acceptor: Device Physics, Photophysics and Morphology, Adv. Energy Mater. 1, 2011, 230.

  • [67] M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti and D. Neher, Influence of Aggregation on the Performance of All- Polymer Solar Cells Containing Low-Bandgap Naphthalenediimide Copolymers, Adv. Energy Mater. 2, 2012, 369.

  • [68] N. Zhou, H. Lin, S.J. Lou, X. Yu, P. Guo, E.F. Manley, S. Loser, P. Hartnett, H. Huang, M.R.Wasielewski, L.X. Chen, R.P.H. Chang, A. Facchetti and T.J.Marks, Morphology-Performance Relationships in High-Eflciency All-Polymer Solar Cells, Adv. Energy Mater. 4, 2014, 1300785.

  • [69] D. Mori, H. Benten, I. Okada, H. Ohkita and S. Ito, Low-Bandgap Donor/Acceptor Polymer Blend Solar Cells with Eflciency Exceeding 4%, Adv. Energy Mater. 4, 2014, 1301006.

  • [70] H. Huang, N. Zhou, R.P. Ortiz, Z. Chen, S. Loser, S. Zhang, X. Guo, J. Casado, J. T. López Navarrete, X. Yu, A. Facchetti and T.J. Marks, Alkoxy-Functionalized Thienyl-Vinylene Polymers for Field-Effect Transistors and All-Polymer Solar Cells, Adv. Funct. Mater. 24, 2014, 2782.

  • [71] M. Sommer, Conjugated polymers based on naphthalenediimide for organic electronics, J.Mater. Chem. C 2, 2014, 3088.

  • [72] Y.-J. Hwang, G. Ren, N.M. Murari and S.A. Jenekhe, n- Type NaphthaleneDiimide–Biselenophene Copolymer for All- Polymer Bulk Heterojunction Solar Cells, Macromolecules 45, 2012, 9056.

  • [73] T. Earmme, Y.-J.Hwang, N.M.Murari, S. Subramaniyan and S.A. Jenekhe, All-Polymer Solar Cells with 3.3% Eflciency Based on NaphthaleneDiimide-Selenophene Copolymer Acceptor, J. Am. Chem. Soc. 135, 2013, 14960.

  • [74] Y.-J. Hwang, T. Earmme, B.A.E. Courtright, F.N. Eberle and S.A. Jenekhe, n-Type Semiconducting Naphthalene Diimide- Perylene Diimide: Controlling Crystallinity, Blend Morphology, and Compatibility Towards High Performance All-Polymer Solar Cells, J. Am. Chem Soc. 137, 2015, 4424.

  • [75] C. Lee, H. Kang, W. Lee, T. Kim, K.-H. Kim, H.Y. Woo, C. Wang, and B.J. Kim, High-Performance All-Polymer Solar Cells Via Side Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology, Adv. Mater. 27, 2015, 2466.

  • [76] E. Zhou, M. Nakano, S. Izawa, J. Cong, I. Osaka, K. Takimiya, and K. Tajima, All-Polymer Solar Cell with High Near-Infrared Response Bsed on a Naphthodithiophene diimide (NDTI) Copolymer, ACS Macro Lett. 3, 2014, 872.

  • [77] N.B. Kolhe, A.Z. Ashar, K.S. Narayan and S.K. Asha, NaphthaleneDiimide Copolymers with Oligo(p-phenylenevinylene) and Benzobisoxazole for Balanced Ambipolar Charge Transport, Macromolecules 47, 2014, 2296.

  • [78] E. Zhou, J. Cong, M. Zhao, L. Zhang, K. Hashimoto and K. Tajima, Synthesis and application of poly(fluorene-altnaphthalenediimide) as an n-type polymer for all-polymer solar cells, Chem. Commun. 48, 2012, 5283.

  • [79] M. Yuan, M.M. Durban, P.D. Kazarinoff, D.F. Zeigler, A.H. Rice, Y. Segawa and C.K. Luscombe, Synthesis and characterization of fused-thiophene containing naphthalenediimide n-type copolymers for organic thin film transistor and allpolymer solar cell applications, J. Polym. Sci., Part A; Polym. Chem. 51, 2013, 4061.

  • [80] M. Shi, L. Fu, X. Hu, L. Zuo, D. Deng, J. Chen and H. Chen, Design and synthesis of carbonyl group modified conjugated polymers for photovoltaic application, Polym. Bull. 68, 2012, 1867.

  • [81] Y. Wei, Q. Zhang, Y. Jiang and J. Yu, Novel Low Bandgap EDOT-Naphthalene Bisimides Conjugated Polymers: Synthesis, Redox, and Optical Properties, Macromol. Chem. Phys. 210, 2009, 769.

  • [82] Q. Xu, J.Wang, S. Chen,W. Li and H.Wang, Synthesis and characterization of naphthalenediimide polymers based on donoracceptor system for polymer solar cells, eXPRESS Polymer Letters 7, 2013, 842.

  • [83] S.-C. Chen, Q. Zheng, Q. Zhang, D. Cai, J. Wang, Z. Yin and C. Tang, Tuning the frontier molecular orbital energy levels of ntype conjugated copolymers by using angular-shaped naphthalene tetracarboxylic diimides, and their use in all-polymer solar cells with high open-circuit voltages, J. Polym. Sci., Part A; Polym. Chem. 51, 2013, 1999.

  • [84] J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti and A.B. Holmes, Eflcient photodiodes from interpenetrating polymer networks, Nature 376, 1995, 498.

  • [85] G. Yu and A.J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions, J. Appl. Phys. 78, 1995, 4510.

  • [86] T. Kietzke, H.-H. Hörhold and D. Neher, Eflcient Polymer Solar Cells Based on M3EH-PPV, Chem. Mater. 17, 2005, 6532.

  • [87] T.W. Holcombe, C.H. Woo, D.F.J. Kavulak, B.C. Thompson and J.M.J. Fréchet, All-Polymer Photovoltaic Devices of Poly(3-(4- n-octyl)-phenylthiophene) from Grignard Metathesis (GRIM) Polymerization, J. Am. Chem. Soc. 131, 2009, 14160.

  • [88] M.M. Koetse, J. Sweelssen, K.T. Hoekerd, H.F.M. Schoo, S.C. Veenstra, J.M. Kroon, X. Yang and J. Loos, Eflcient polymer: polymer bulk heterojunction solar cells, Appl. Phys. Lett. 88, 2006, 083504.

  • [89] C.R. Mcneill, J.J.M. Halls, R. Wilson, G.L. Whiting, S. Berkebile, M.G. Ramsey, R.H. Friend and N.C. Greenham, Eflcient Polythiophene/ Polyfluorene Copolymer Bulk Heterojunction Photovoltaic Devices: Device Physics and Annealing Effects, Adv. Funct. Mater. 18, 2008, 2309.

  • [90] D. Mori, H. Benten, J. Kosaka, H. Ohkita, S. Ito and K. Miyake, Polymer/Polymer Blend Solar Cellswith 2.0% Eflciency Developed by Thermal Purification of Nanoscale-Phase-Separated Morphology, ACS Appl. Mater. Interfaces 3, 2011, 2924.

  • [91] W. Zhou, Z.-G. Zhang, L. Ma, Y. Li and X. Zhan, Dithienocoronene diimide based conjugated polymers as electron acceptors for all-polymer solar cells, Sol. EnergyMater. Sol. Cells 112, 2013, 13.

  • [92] R. Stalder, J. Mei and J.R. Reynolds, Isoindigo-Based Donor- Acceptor Conjugated Polymers, Macromolecules 43, 2010, 8348.

  • [93] R. Stalder, J. Mei, J. Subbiah, C. Grand, L.A. Estrada, F. So and J.R. Reynolds, n-Type Conjugated Polyisoindigos, Macromolecules 44, 2011, 6303.

  • [94] M.-F. Falzon, A.P. Zoombelt, M.M. Wienk and R.A.J. Janssen, Diketopyrrolopyrrole-based acceptor polymers for photovoltaic application, Phys. Chem. Chem. Phys. 13, 2011, 8931.

  • [95] M.M. Wienk, M. Turbiez, J. Gilot and R.A.J. Janssen, Narrow- Bandgap Diketo-Pyrrolo-Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance, Adv. Mater. 20, 2008, 2556.

  • [96] W. Li, W.S.C. Roelofs, M. Turbiez, M.M. Wienk and R.A.J. Janssen, Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor, Adv. Mater. 26, 2014, 3304.

  • [97] E.E. Neuteboom, S.C.J. Meskers, P.A. Van Hal, J.K.J. Van Duren, E.W. Meijer, R.A.J. Janssen, H. Dupin, G. Pourtois, J. Cornil, R. Lazzaroni, J.-L. Brédas and D. Beljonne, Alternating Oligo(pphenylene vinylene)-Perylene Bisimide Copolymers: Synthesis, Photophysics, and Photovoltaic Properties of a New Class of Donor-Acceptor Materials, J. Am. Chem. Soc. 125, 2003, 8625.

  • [98] Y. Liu, C. Yang, Y. Li, Y. Li, S. Wang, J. Zhuang, H. Liu, N. Wang, X. He, Y. Li and D. Zhu, Synthesis and Photovoltaic Characteristics of Novel Copolymers Containing Poly(phenylenevinylene) and Triphenylamine Moieties Connected at 1,7 Bay Positions of Perylene Bisimide, Macromolecules 38, 2005, 716.

  • [99] S.M. Lindner, S. Hüttner, A. Chiche, M. Thelakkat and G. Krausch, Charge Separation at Self-Assembled Nanostructured Bulk Interface in Block Copolymers, Angew. Chem. Int. Ed. 45, 2006, 3364.

  • [100] M. Sommer, S.M. Lindner and M. Thelakkat, Microphase- Separated Donor–Acceptor Diblock Copolymers: Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells, Adv. Funct. Mater. 17, 2007, 1493.

  • [101] M. Sommer, A.S. Lang and M. Thelakkat, Crystalline– Crystalline Donor–Acceptor Block Copolymers, Angew. Chem. Int. Ed. 47, 2008, 7901.

  • [102] M. Sommer, S. Hüttner, U. Steiner and M. Thelakkat, Influence of molecular weight on the solar cell performance of doublecrystalline donor-acceptor block copolymers, Appl. Phys. Lett. 95, 2009, 183308.

  • [103] Q. Zhang, A. Cirpan, T.P. Russell and T. Emrick, Donor-Acceptor Poly(thiophene-block-perylenediimide) Copolymers: Synthesis and Solar Cell Fabrication,Macromolecules 42, 2009, 1079.

  • [104] K. Nakabayashi and H. Mori, All-Polymer Solar Cells Based on Fully Conjugated Block Copolymers Composed of Poly(3- hexylthiophene) and Poly(naphthalene bisimide) Segments, Macromolecules 45, 2012, 9618.

  • [105] C. Guo, Y.-H. Lin, M.D. Witman, K.A. Smith, C. Wang, A. Hexemer, J. Strzalka, E.D. Gomez and R. Verduzco, Conjugated Block Copolymer Photovoltaics with near 3% Eflciency through Microphase Separation, Nano Lett. 13, 2013, 2957.

  • [106] A.M. Ramos, M.T. Rispens, J.K.J. Van Duren, J.C. Hummelen and R.A.J. Janssen, Photoinduced Electron Transfer and Photovoltaic Devices of a Conjugated Polymer with Pendant Fullerenes, J. Am. Chem. Soc. 123, 2001, 6714.

  • [107] F. Zhang, M. Svensson, M.R. Andersson, M. Maggini, S. Bucella, E. Menna and O. Inganäs, Soluble Polythiophenes with Pendant Fullerene Groups as Double Cable Materials for Photodiodes, Adv. Mater. 13, 2001, 1871.

  • [108] B. De Boer, U. Stalmach, P.F. Van Hutten, C. Melzer, V.V. Krasnikov and G. Hadziioannou, Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers, Polymer 42, 2001, 9097.

  • [109] S. Miyanishi, Y. Zhang, K. Tajima and K. Hashimoto, Fullerene attached all-semiconducting diblock copolymers for stable single-component polymer solar cells, Chem. Commun. 46, 2010, 6723.

  • [110] S. Miyanishi, Y. Zhang, K. Hashimoto and K. Tajima, Controlled Synthesis of Fullerene-Attached Poly(3-alkylthiophene)-Based Copolymers for Rational Morphological Design in Polymer Photovoltaic Devices, Macromolecules 45, 2012, 6424.

  • [111] K. Sivula, Z.T.Ball, N.Watanabe and J.M.J. Fréchet, Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of Polythiophene:Fullerene Solar Cells, Adv. Mater. 18, 2006, 206.

  • [112] B. Gholamkhass and S. Holdcroft, Toward Stabilization of Domains in Polymer Bulk Heterojunction Films, Chem. Mater. 22, 2010, 5371.

  • [113] H.J. Kim, A.R. Han, C.-H. Cho, H. Kang, H.-H. Cho, M.Y. Lee, J. M. J. Fréchet, J.H. Oh and B.J. Kim, Solvent-Resistant Organic Transistors and Thermally Stable Organic Photovoltaics Based on Cross-linkable Conjugated Polymers, Chem. Mater. 24, 2011, 215.

  • [114] F.S. Schoonbeek, J.H. Van Esch, B. Wegewijs, D.B.A. Rep, M.P. De Haas, T.M. Klapwijk, R.M. Kellogg and B.L. Feringa, Eflcient Intermolecular Charge Transport in Self-Assembled Fibers of Mono- and Bithiophene Bisurea Compounds, Angew. Chem. Int. Ed. 38, 1999, 1393.

  • [115] A.P.H.J. Schenning, J.V. Herrikhuyzen, P. Jonkheijm, Z. Chen, F. Würthner and E.W. Meijer, Photoinduced Electron Transfer in Hydrogen-Bonded Oligo(p-phenylene vinylene)-Perylene Bisimide Chiral Assemblies, J. Am. Chem. Soc. 124, 2002, 10252.

  • [116] F. Würthner, Z. Chen, F.J.M. Hoeben, P. Osswald, C.-C. You, P. Jonkheijm, J.V. Herrikhuyzen, A.P.H.J. Schenning, P.P.A.M. Van Der Schoot, E.W. Meijer, E.H.A. Beckers, S.C.J. Meskers and R.A.J. Janssen, Supramolecular p-n-Heterojunctions by Co- Self-Organization of Oligo(p-phenylene Vinylene) and Perylene Bisimide Dyes, J. Am. Chem. Soc. 126, 2004, 10611.

  • [117] A. El-Ghayoury, A.P.H.J. Schenning, P.A. Van Hal, J.K.J. Van Duren, R.A.J. Janssen and E.W. Meijer, Supramolecular Hydrogen-Bonded Oligo(p-phenylene vinylene) Polymers, Angew. Chem. Int. Ed. 40, 2001, 3660.

  • [118] L. Sánchez, N. Martín and D.M. Guldi, Hydrogen-Bonding Motifs in Fullerene Chemistry, Angew. Chem. Int. Ed. 44, 2005, 5374.

  • [119] C.-C. Chu, G. Raffy, D. Ray, A.D. Guerzo, B. Kauffmann, G. Wantz, L. Hirsch and D.M. Bassani, Self-Assembly of Supramolecular Fullerene Ribbons via Hydrogen-Bonding Interactions and Their Impact on Fullerene Electronic Interactions and Charge Carrier Mobility, J. Am. Chem. Soc. 132, 2010, 12717.

  • [120] N.B. Kolhe, R.N. Devi, S.P. Senanayak, B. Jancy, K.S. Narayan and S.K. Asha, Structure engineering of naphthalenediimides for improved charge carrier mobility: self-assembly by hydrogen bonding, good or bad?, J. Mater. Chem. 22, 2012, 15235.

  • [121] Z. Xiao, K. Sun, J. Subbiah, S. Ji, D.J. Jones and W.W.H. Wong, Hydrogen bonding in bulk heterojunction solar cells: A case study, Sci. Rep. 4, 2014, 1.

  • [122] R.B.K. Siram, M. Stephen, F. Ali and S. Patil, Investigation of Phase Separation in Bulk Heterojunction Solar Cells via Supramolecular Chemistry, J. Phys. Chem. C 117, 2013, 9129.

  • [123] K.-H. Kim, H. Yu, H. Kang, D.J. Kang, C.-H. Cho, H.-H. Cho, J.H. Oh and B.J. Kim, Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices, J.Mater. Chem. A 1, 2013, 14538.

  • [124] K.H. Lam, T.R.B. Foong, Z.E. Ooi, J. Zhang, A.C. Grimsdale and Y.M. Lam, Enhancing the Performance of Solution- Processed Bulk-Heterojunction Solar Cells Using Hydrogen- Bonding-Induced Self-Organization of Small Molecules, ACS Appl. Mater. Interfaces 5, 2013, 13265.

  • [125] C. Suspene, L. Miozzo, J. Choi, R. Gironda, B. Geffroy, D. Tondelier, Y. Bonnassieux, G. Horowitz and A. Yassar, Amphiphilic conjugated block copolymers for eflcient bulk heterojunction solar cells, J. Mater. Chem. 22, 2012, 4511.

  • [126] F. Li, K.G. Yager, N.M. Dawson, J. Yang, K.J. Malloy and Y. Qin, Complementary Hydrogen Bonding and Block Copolymer Self- Assembly in Cooperation toward Stable Solar Cells with Tunable Morphologies, Macromolecules 46, 2013, 9021.

  • [127] F. Li, K.G. Yager, N.M. Dawson, Y.-B. Jiang, K.J. Malloy and Y. Qin, Stable and Controllable Polymer/Fullerene Composite Nanofibers through Cooperative Noncovalent Interactions for Organic Photovoltaics, Chem. Mater. 26, 2014, 3747.

  • [128] K. Yao, L. Chen, F. Li, P. Wang and Y. Chen, Cooperative Assembly Donor-Acceptor System Induced by Intermolecular Hydrogen Bonds Leading to Oriented Nanomorphology for Optimized Photovoltaic Performance, J. Phys. Chem. C 116, 2011, 714.

  • [129] Y. Lin, J.A. Lim, Q. Wei, S.C.B. Mannsfeld, A.L. Briseno and J.J. Watkins, Cooperative Assembly of Hydrogen-Bonded Diblock Copolythiophene/Fullerene Blends for Photovoltaic Devices with Well-Defined Morphologies and Enhanced Stability, Chem. Mater. 24, 2012, 622.

  • [130] J.K. Mwaura, M.R. Pinto, D. Witker, N. Ananthakrishnan, K.S. Schanze and J.R. Reynolds, Photovoltaic Cells Based on Sequentially Adsorbed Multilayers of Conjugated Poly(pphenylene ethynylene)s and aWater-Soluble Fullerene Derivative, Langmuir 21, 2005, 10119.

  • [131] T.-C. Liang, I.H. Chiang, P.-J. Yang, D. Kekuda, C.-W. Chu and H.- C. Lin, Supramolecular assembly of H-bonded side-chain polymers containing conjugated pyridyl H-acceptor pendants and various low-band-gap H-donor dyes bearing cyanoacrylic acid groups for organic solar cell applications, J. Polym. Sci., Part A; Polym. Chem. 47, 2009, 5998.

  • [132] D. Patra, M. Ramesh, D. Sahu, H. Padhy, C.-W. Chu, K.-H. Wei and H.-C. Lin, Enhancement of photovoltaic properties in supramolecular polymer networks featuring a solar cell mainchain polymer H-bonded with conjugated cross-linkers, Polymer 53, 2012, 1219.

  • [133] B. Saibal, A.Z. Ashar, R.N. Devi, K.S. Narayan and S.K. Asha, Nanostructured Donor-Acceptor Self Assembly with Improved Photoconductivity, ACS Appl.Mater. Interfaces 6, 2014, 19434.

  • [134] N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Lévęque, J.-N. Audinot, S. Berson, T. Heiser, G. Hadziioannou and R. Mezzenga, A New Supramolecular Route for Using Rod-Coil Block Copolymers in Photovoltaic Applications, Adv. Mater. 22, 2010, 763.

  • [135] B.J. Rancatore, C.E. Mauldin, S.-H. Tung, C.Wang, A. Hexemer, J. Strzalka, J.M.J. Fréchet and T. Xu, Nanostructured Organic Semiconductors via Directed Supramolecular Assembly, ACS Nano 4, 2010, 2721.

  • [136] B.J. Rancatore, C.E. Mauldin, J.M.J. Fréchet and T. Xu, Small Molecule-Guided Thermoresponsive Supramolecular Assemblies, Macromolecules 45, 2012, 8292.

  • [137] R. Narayan, P. Kumar, K.S. Narayan and S.K. Asha, Nanostructured Crystalline Comb Polymer of Perylenebisimide by Directed Self-Assembly: Poly(4-vinylpyridine)- pentadecylphenol Perylenebisimide, Adv. Funct. Mater. 23, 2013, 2033.

  • [138] R. Narayan, P. Kumar, K.S. Narayan and S.K. Asha, Supramolecular P4VP-pentadecylphenol naphthalenebisimide combpolymer: mesoscopic organization and charge transport properties, J. Mater. Chem. C 2, 2014, 6511.

  • [139] A. Ruiz-Carretero, T. Aytun, C.J. Bruns, C.J. Newcomb, W.-W. Tsai and S.I. Stupp, Stepwise self-assembly to improve solar cell morphology, J. Mater. Chem. A 1, 2013, 11674.

OPEN ACCESS

Journal + Issues

Search