Research in the Field of Organic Photovoltaics at the Institute for Problems of Chemical Physics of Russian Academy of Sciences

Pavel A. Troshin 1
  • 1 Institute for Problems of Chemical Physics of Russian Academy of Sciences, Academician N. N. Semenov Prospect 1, Chernogolovka, Moscow region, 142432, Russia

Abstract

In the present review we highlight the main research activities in the field of organic photonics and photovoltaics at the Institute for Problems of Chemical Physics of Russian Academy of Sciences (IPCP RAS). Extensive investigation of optical and electrical properties of π-conjugated organic compounds performed at IPCP RAS since 1960’s resulted in design of many exciting materials representing organic semiconductors, metals and superconductors. Organic Schottky barrier and p/n junction photovoltaic devices constructed at IPCP RAS in 1960’s and 1970’s were among the first examples of reasonably efficient organic solar cells at that time. These early discoveries inspired younger generations of the researchers to continue the work of their mentors and explore the world of organic materials and photonic devices such as molecular photonic switches, organic light emitting diodes, solar cells, photodetectors, photoswitchable organic field-effect transistors and memory elements.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] H. Letheby, On the production of a blue substance by the electrolysis of sulphate of aniline, J. Chem. Soc. 15, 1862, 161.

  • [2] Goppelsroeder F., Studien über die Anwendung der Elektrolyse zur Darstellung, zur Veränderung und zur Zerstörung der Farbstoffe, ohne oder in Gegenwart von vegetabilischen oder animalischen Fasern, Die Internationale Elektrotechnische Ausstellung (16-19 Mai 1891, Frankfurt am Main, Deutschland), 1891, 978-981.

  • [3] H. Naarmann, F. Beck, E.G. Kastning, 1964, BASF, DE 1 178 529.

  • [4] H. Naarmann, Structure and Conductivity of Organic Polymers, Angew. Chem. Int. Ed. Engl. 8, 1969, 915.

  • [5] T. Ito, H. Shirakawa, S. Ikeda, Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution, J. Polym. Sci. Polym. Chem. 12, 1974, 11.

  • [6] V.V. Korshak, V.I. Kasatochkin, I.P. Kudriavt, K. Usenbaev, A.M. Sladkov, Synthesis and properties of polyacetylene. Doklady Akademii Nauk SSSR, 136, 1961, 1342.

  • [7] E.I. Balabanov, A.A. Berlin, V.P. Parini, V.L. Talrose, E.L. Frankevich, M.I. Cherkashin, Electric conductivity of polymers with conjugate bonds. Doklady Akademii Nauk SSSR, 134, 1960, 1123.

  • [8] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc. Chem. Commun. 1977, 578.

  • [9] R. Greene, G.B. Street, L.J. Suter, Superconductivity in Polysulfur Nitride (SN)X, Phys. Rev. Lett. 34, 1975, 577.

  • [10] F. Wudl, D.Wobschall, E.J. Hufnagel, Electrical Conductivity by the bis(1,3-dithiole)-bis(1,3-dithiolium) system, J. Am. Chem. Soc. 94 (2), 1972, 670.

  • [11] J. Ferraris, D.O. Cowan, V.V.Walatka, Jr., J.H. Perlstein, Electron transfer in a new highly conducting donor-acceptor complex, J. Am. Chem. Soc. 95 (3), 1973, 948.

  • [12] D. Jérôme, A.Mazaud, M. Ribault and K. Bechgaard, Superconductivity in a synthetic organic conductor (TMTSF)2PF6, Journal de Physique Lettres 41, 4, 1980, 95.

  • [13] L.I. Buravov, M.L. Khidekel, I.F. Shchegolev, E.B. Yagubskii, Superconductivity and dielectric constant of highly conductive complexes of tetracyanoquinodimethane (TCQM), JETP Lett. 12, 1970, 99.

  • [14] E.B. Yagubskii, I.F. Shchegolev, V.N. Laukhin, P.A. Kononovich, M.V. Karatsovnik, A.V. Zvarykina, L.I. Buravov, Normalpressure superconductivity in an organic metal (BEDTTTF) 2L3

  • [bis(ethylene-dithiolo)tetrathiofulvalene triiodide], JETP Lett. 39, 1984, 12.

  • [15] R.N. Lyubovskaya, R.B. Lyubovskii, R.P. Shibaeva, M.Z. Aldoshina, L.M. Goldenberg, L.P. Rozenberg, M.L. Khidekel, Y.F. Shulpyakov, Superconductivity in a BEDT-TTF organic conductor with a chloromercurate anion, JETP Lett. 42, 1985, 468.

  • [16] R.P. Shibaeva, E.B. Yagubskii, Molecular conductors and superconductors based on trihalides of BEDT-TTF and some of its analogues, Chem. Rev. 104, 2004, 5347.

  • [17] M. Pope and Charles E. Swenberg, Electronic processes in organic crystals and polymers, New York Oxford 1999

  • [18] P.M. Borsenberger, V.S. Weiss, M. Dekker, Organic photoreceptors, IMC 1998

  • [19] H. Meier, Organic semiconductors, Verlag Chemie GmbH 1974

  • [20] J. Simon, J.J. Andre, Molecular semiconductors. Photoelectrical properties and solar cells, In: J.M. Leen and C.W. Rees (Eds.), Berlin/Heidelberg/New York/Tokyo: Springer-Verlag 1985

  • [21] N.A. Goryunova, Organic Semiconductors (Organicheskie Poluprovodniki), Moskva, 1968 (in Russian)

  • [22] L.I. Boguslavskiy, A.V. Vannikov, Organic semiconductors and biopolymers (Organicheskie poluprovodniki i biopolimeri), Moskva 1968 (in Russian)

  • [23] A. Dulov, A. Slinkin, Organic Semiconductors. Polymers with conjugated bonds (Organicheskie poluprovodniki. Polimeri s sopryazhennimi svyazyami), Moskva, Nauka 1970 (in Russian)

  • [24] F. Gutman and L. E. Lyons, Organic Semiconductors, (Wiley), New York, 1967.

  • [25] E.L. Frankevich, E.I. Balabanov, New effect of increasing photoconductivity of organic semiconductors in a wear magnetic field, JETP Letters-USSR 1, 1965, 169

  • [26] E.L. Frankevich, Nature of a new effect of a change in photoconductivity of organic semiconductors in amagnetic field, Soviet Physics JETP-USSR 23, 1966, 814

  • [27] E.L. Frankevich, B.M. Rumyantsev, Anthracene luminescence quenching by a magnetic field, JETP Letters-USSR 6, 1967, 553 (in Russian)

  • [28] Y.B. Zeldovich, A.L. Buchachenko, E.L. Frankevich, Magnetic and spin effects in chemistry and molecular physics, Uspekhi Fizicheskikh Nauk, 155, 1988, 3

  • [29] E.J. Fedotova, I.M. Stolovitskii, E.L. Frankevich, Magnetic-field effect on the separated charge generation in photochemical reactions involving chlorophyll A in solutions, Dokladi Akademii Nauk SSSR, 254, 1980, 423

  • [30] L.I. Paramonova, Y.M. Stolovitsky, A.Y. Shkuropatov, E.L. Frankevich, Photoelectric properties of fucoxanthin layers, Biofizika, 28, 1983, 364

  • [31] E.L. Frankevich, D.I. Kadyrov, I.A. Sokolik, A.I. Pristupa, V.M. Kobryanskii, N.Y. Zurabyan, On the conductivity mechanism of weakly doped polyacetylene, Physica Status Solidi B, 132, 1985, 283

  • [32] E.L. Frankevich, M.M. Tribel, I.A. Sokolik, B.B. Kotov, Photoconductivity of charge transfer complex crystals anthracenedimethylpyromellitimide, Physica Status Solidi A, 40, 1977, 655

  • [33] D.I. Kadyrov, L.S. Koltsova, I.A. Sokolik, E.L. Frankevich, M.G. Chauser, Mechanism of the photogeneration of current carriers in films of polyphenylacetylene with chloranil, High Energ. Chem. 17, 1983, 56

  • [34] A.P. Tyutnev, V.P Sichkar, A.V. Vannikov, Electronic processes induced by radiation in organic solid systems, Uspekhi Khimii 50, 1981, 977

  • [35] A.N. Tikhonov, G.B. Khomutov, E.K. Ruuge, L.A. Blumenfeld, Electron transport control in chloroplasts-effects of photosynthetic control monitored by intrathyllakoid pH, Biochimica et Biophysica Acta, 637, 1981, 321

  • [36] G.A. Chamberlain, Organic solar cells: A review, Solar cells, 8, 1983, 47.

  • [37] V.A. Benderskii, N.N. Usov, M.I. Fedorov, Quantum yield of the barrier photoeffect in phthalocyanine films, Dokladi Akademii Nauk SSSR, 183, 1968, 1117 (in Russian).

  • [38] N.N. Usov, V.A. Benderskii, Barrier effect in Phtalocyanine films, Sov. Phys. Semicond. USSR 2, 1968, 580.

  • [39] M.I. Fedorov, V.A. Benderskii, Kharakteristiki tonkoplenochnikh photoelementov na osnove ftalotsianina magniya, Physika i Technika Poluprovodnikov 7, 1970, 1403 (in Russian).

  • [40] N.N. Usov, V.A. Benderskii, Photoeffect in metal-free phthalocyanine crystals, Phys. Stat. Sol. 37, 1970, 535.

  • [41] M.I. Fedorov, V.A. Benderskii, Obrazovanie p-n Perekhoda pri Legirovanii Sloev Ftalotsianina Magniya, Physika Poluprovodnikov 12, 1970, 2007 (in Russian).

  • [42] M.I. Fedorov, V.A. Benderskii, Formation of p-n junctions by doping magnesium phthalocyanine films, Sov. Phys. Semicond. USSR 4, 1971, 1720.

  • [43] V.A. Benderskii, M.I. Alyanov, M.I. Fedorov, L.M. Fedorov, Model organic transformers of light energy, Dok. Akad. Nauk SSSR 239, 1978, 856 (in Russian).

  • [44] C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 1986, 183.

  • [45] S.M. Aldoshin, O.A. Dyachenko, L.O. Atovmyan, V.I. Minkin, V.A. Bren, G.D. Paluy, Crystalline and molecular structure of photochromic 2-(N-acetyl-N-3-nitrophenylaminomethylene)- 3,3-(2H)-benzo

  • [B]-thiophehone and its photoinitiated acylotropic rearrangemenr product, Zeitschrift fur kristallographie 159, 1982, 143.

  • [46] S.M. Aldoshin, Spiropyrans - characteristics of their structure and photochemical properties, Uspekhi khimii 59, 1990, 1144.

  • [47] S.A. Krysanov, M.V. Alfimov, Ultrafast formation of transients in spiropyran photochromism, Chem. Phys. Lett. 91, 1982, 77.

  • [48] S.A. Krysanov, M.V. Alfimov, Picosecond spectroscopy of trans-thioindigo, Chem. Phys. Lett. 76, 1980, 221.

  • [49] S.M. Aldoshin, L.A. Nikonova, V.A. Smirnov, G.V. Shilov, N.K. Nagaeva, Structure and photochromic properties of single crystals of spiropyran salts, J. Mol. Struct. 750, 2005, 158.

  • [50] S.M. Aldoshin, Heading to photoswitchable magnets, J. Photochem. and Photobiol. A-Chemistry 200, 2008, 19.

  • [51] M.V. Alfimov, V.F. Razumov, Silverless photographic process based on the photochemical initiation of phasetransformation of a substance, Dokladi Akademii Nauk SSSR 260, 1981, 1383.

  • [52] M.V. Alfimov, V.F. Razumov, A photographic process based on crystallization induced by photochemical reaction, J. Photograph. Sci. 31, 1983, 217.

  • [53] M.G. Spirin, S.B. Brichkin, V.F. Razumov, Synthesis and stabilization of gold nanoparticles in reverse micelles of aerosol OT and triton X-100, Colloid Journal, 67, 2005, 485.

  • [54] L.M. Nikolenko, A.V. Ivanchihina, S.B. Brichkin, V.F. Razumov, Ternary AOT/water/hexane systems as "micellar sieves" for cyanine dye J-aggregates, J. Coll. Interface Sci. 332, 2009, 366- 372.

  • [55] L.M. Nikolenko, V.F. Razumov, Colloidal quantum dots in solar cells, Rus. Chem. Rev. 82, 2013, 429.

  • [56] E.V. Rabenok, M.V. Gapanovich, S.I. Bocharova, Yu. V. Meteleva-Fischer, K.V. Bocharov, G.F. Novikov, Effect of Annealing on the Loss Kinetics of Charge Carriers in CdS Films, J. Renewable Sustainable Energy 5, 2013, 011206.

  • [57] G.F. Novikov, E.V. Rabenok, M.J. Jeng and L.B. Chang, The study of loss kinetics of current carriers in cigs by microwave photoconductivity method, J. Renewable Sustainable Energy 4, 1, 2012, 011604.

  • [58] I.K. Yakushchenko, M.G. Kaplunov, O.N. Efimov, M. Yu. Belov, S.N. Shamaev, Polytriphenylamine derivatives asmaterials for hole transporting layers in electroluminescent devices, Phys. Chem. Chem. Phys. 1, 1999, 1783.

  • [59] S.L. Nikitenko, S.S. Krasnikova, M.G. Kaplunov, I.K. Yakushchenko, Exciplex electroluminescence spectra of the new organic materials based on zinc complexes of sulphanylamino-substituted ligands, Func. Mater. 19, 2012, 202.

  • [60] M.G. Kaplunov, S.N. Nikitenko, S.S. Krasnikova, Exciplex electroluminescence of the new organic materials for lightemitting diodes, In: Jai Singh (ed.), Organic Light Emitting Devices, Chapter 7, ISBN 978-953-51-0850-4, 232 pages, InTech, November 14, 2012.

  • [61] M.G. Kaplunov, S.S. Krasnikova, I.K. Yakushchenko, S.N. Shamaev, A.P. Pivovarov, O.N. Efimov, O.N. Ermakov, S.A. Stakharny, New organic electroluminescent materials, Mol. Cryst. Liq.Cryst. 426, 2005, 287.

  • [62] M.E. El-Khouly, O. Ito, P.M. Smith, F. D’Souza, Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems, J. Photochem. Photobiol. C 5, 2004, 79.

  • [63] D.V. Konarev, I.S. Neretin, Y.L. Slovokhotov, E.I. Yudanova, N.V. Drichko, Y.M. Shul’ga et al., New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins

  • [M(tpp)], in which M = H2, Mn, Co, Cu, Zn, and FeCl, Chem. Eur. J. 7, 2001, 2605.

  • [64] P.A. Troshin, A.S. Peregudov, D. Muhlbacher, R.N. Lyubovskaya, An eflcient

  • [2+3] cycloaddition approach to the synthesis of pyridyl-appended fullerene ligands, Eur. J. Org. Chem. 14, 2005, 3064.

  • [65] M. Prato, M. Maggini, Fulleropyrrolidines: a family of fullfledged fullerene derivatives, Acc. Chem. Res. 31, 1998, 519.

  • [66] P.A. Troshin, A.S. Peregudov, S.I. Troyanov and R.N. Lyubovskaya, New pyrrolidine and pyrroline derivatives of fullerenes: from the synthesis to the use in light-converting systems, Russ. Chem. Bull., Int. Ed. 57, 2008, 887.

  • [67] P.A. Troshin, R.N. Lyubovskaya, Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for their practical use, Russ. Chem. Rev. 77(4), 2008, 305.

  • [68] P.A. Troshin, A.S. Peregudov, S.M. Peregudova, R.N. Lyubovskaya, Highly regio- and stereoselective

  • [2+3]cycloadditions of azomethine ylides to

  • [70]fullerene, Eur. J. Org. Chem. 2007, 5861.

  • [69] P.A. Troshin, S.I. Troyanov, G.N. Boiko, R.N. Lyubovskaya, A.N. Lapshin, N.F. Goldshleger, Eflcient

  • [2+3]cycloaddition approach to synthesis of pyridinyl based

  • [60]fullerene ligands, Fuller. Nanot. Carb. Nanostruct. 12, 2004, 435.

  • [70] A.N. Lapshin, V.A. Smirnov, R.N. Lyubovskaya, N.F. Goldshleger, Spectroscopic study of the reaction of cis- 1,3-di(2-pyridyl)

  • [60]fullereno

  • [1,2-c]pyrrolidine and 2-(2- pyridylmethyl)-1,3-di(2-pyridyl)

  • [60]fullereno

  • [1,2-c]pyrrolidine with zinc meso-tetraphenylporphyrinate, Russ. Chem. Bull., Int. Ed. 54, 2005, 2338.

  • [71] I.A. Mochalov, A.N. Lapshin, V.A. Nadtochenko, V.A. Smirnov, N.F. Goldshleger, Photochemical study of the zinc cis- 3-(4-imidazolylphenyl)-1-(pyridin-2-yl)

  • [60]fullereno

  • [1,2- c]pyrrolidine-meso-tetraphenylporphyrinate dyad, Russ. Chem. Bull., Int. Ed. 55, 2006, 1598.

  • [72] D.V. Konarev, S.S. Khasanov, A.B. Kornev, M.A. Faraonov, P.A. Troshin, R.N. Lyubovskaya, Molecular and ionic complexes of pyrrolidinofullerene bearing chelating 3 pyridyl units, Dalton Trans. 40, 2012, 791.

  • [73] R. Koeppe, P.A. Troshin, A. Fuchsbauer, R.N. Lyubovskaya, N.S. Sariciftci, Photoluminescence studies on the supramolecular interactions between a pyrollidinofullerene and zincphthalocyanine used in organic solar cells, Fuller. Nanotub. Carb. Nanostruct. 14, 2006, 441.

  • [74] P.A. Troshin, R. Koeppe, A.S. Peregudov, S.M. Peregudova, M. Egginger, R.N. Lyubovskaya, N.S. Sariciftci, Supramolecular association of pyrrolidinofullerenes bearing chelating pyridyl groups and zinc phthalocyanine for organic solar cells, Chem. Mater. 19, 2007, 5363.

  • [75] R. Koeppe, P.A. Troshin, R.N. Lyubovskaya, N.S. Sariciftci, Complexation of pyrrolidinofullerenes and zincphthalocyanine in a bilayer organic solar cell structure, Appl. Phys. Lett. 87, 2005, 244102.

  • [76] D.M. Guldi, Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models, Chem. Soc. Rev. 31, 2002, 22.

  • [77] P.A. Troshin, N.S. Sariciftci, Supramolecular Chemistry for Organic Photovoltaics, In: J.W. Steed. and P.A. Gale (eds), Supramolecular Chemistry: From Molecules to Nanomaterials., Volume 5, Chapter 29, pp. 2725-2788, John Wiley & Sons, Ltd., Chichester, UK, 2012.

  • [78] P.A. Troshin, R. Koeppe et. al., unpublished results

  • [79] N. Li, P. Kubis, K. Forberich et al., Towards large-scale production of solution-processed organic tandem modules based on ternary composites: design of the intermediate layer, device optimization and laser based module processing, Sol. Energ. Mater. Sol. Cells 120, 2014, 701.

  • [80] T. Ameri, P. Khoram, J. Min, C.J. Brabec, Organic ternary solar cells: a review, Adv. Mater. 25, 2013, 4245.

  • [81] A.C. Mayer, M.F. Toney, S.R. Scully, J. Rivnay, C.J. Brabec, M. Scharber et al., Bimolecular crystals of fullerenes in conjugated polymers and the implications of molecular mixing for solar cells, Adv. Funct. Mater. 19, 2009, 1173.

  • [82] Ting Xiao, Haihua Xu, Giulia Grancini, Jiangquan Mai, Annamaria Petrozza, U-Ser Jeng et al., Molecular packing and electronic processes in amorphous-like polymer bulk heterojunction solar cells with fullerene intercalation, Scientific Reports 4, 2014, 5211.

  • [83] N.C. Miller, E. Cho, R. Gysel, C. Risko, V. Coropceanu, C.E. Miller et al., Factors governing intercalation of fullerenes and other small molecules between the side chains of semiconducting polymers used in solar cells, Adv. Energy Mater. 2, 2012, 1208.

  • [84] N.C. Cates, R. Gysel, Z. Beiley, C.E. Miller, M.F. Toney, M. Heeney et al., Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation, Nano Lett. 9, 2009, 4153.

  • [85] P.A. Troshin, E.A. Khakina, M. Egginger, A.E. Goryachev, S.I. Troyanov, A. Fuchsbauer et al., Thiophene- and furansubstituted methanofullerenes as novel materials for organic solar cells, ChemSusChem 3, 2010, 356.

  • [86] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J. Hummelen, 2.5% eflcient organic plastic solar cells, Appl. Phys. Lett. 78, 2001, 841.

  • [87] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch et al., Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells, Adv. Funct. Mater., 2004, 14, 1005.

  • [88] H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M.Ch. Lux- Steiner, N.S. Sariciftci, Kelvin probe force microscopy study on conjugated polymer/fullerene bulk-heterojunction organic solar cells, Nano Lett. 5, 2005, 269.

  • [89] M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrom, W. Mammo, M.R. Andersson et al., Photoluminescence quenching at a polythiophene/C60 heterojunction, Phys. Rev. B 61, 2000, 12 957.

  • [90] D.E. Markov, C. Tanase, P.W.M. Blom, J. Wildeman, Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives, Phys. Rev. B 72, 2005, 045217.

  • [91] O.A.Mukhacheva, A.E. Goryachev, O. Usluer, D. Egbe and P. A. Troshin, in preparation

  • [92] P.A. Troshin, H. Hoppe, A.S. Peregudov, M. Egginger, S. Shokhovets, G. Gobsch, N.S. Sariciftci, V.F. Razumov,

  • [70]fullerene-based materials for organic solar cells, Chem- SusChem 4, 2011, 119.

  • [93] P.A. Troshin, O.A. Mukhacheva, O. Usluer, S. Rathgeber, A.E. Goryachev, A.V. Akkuratov et al., Improved photovoltaic performance of the PPV-PPE-type copolymer using optimized fullerene-based counterparts, Adv. Energ. Mater. 3, 2013, 161.

  • [94] P.A. Troshin and N.S. Sariciftci, Organic nanomaterials for efficient bulk heterojunction solar cells, In: T. Torres and G. Bottari (Eds.), Organic Nanomaterials: Synthesis, Characterization, and Device Applications, John Wiley & Sons, Inc., 2013, Hoboken, NJ, USA, Chapter 25, pp. 549-578

  • [95] L.M. Chen, Z. Hong, G. Li, Y. Yang, Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of eflcient inverted polymer solar cells, Adv. Mater. 21, 2009, 1434.

  • [96] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells, Adv. Funct. Mater. 18, 2008, 1783.

  • [97] A.J. Moulé, K. Meerholz, Controlling morphology in polymerfullerene mixtures, Adv. Mater. 20, 2008, 240.

  • [98] J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim et al., Processing additives for improved eflciency from bulk– heterojunction solar cells, J. Am. Chem. Soc. 130, 2008, 3619.

  • [99] F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cell, Adv. Funct. Mater. 13, 2003, 85.

  • [100] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery et al., High-eflciency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4, 2005, 864.

  • [101] V.A. Kostyanovsky, D.K. Susarova, A.S. Peregudov, P.A. Troshin, Polymerizable fullerene-based material for organic solar cells, Thin Solid Films 519, 2011, 4119.

  • [102] J.Y. Mayorova, S.L. Nikitenko, P.A. Troshin, S.M. Peregudova, A.S. Peregudov, M.G. Kaplunov et al., Synthesis and investigation of novel fullerene-based acceptor materials, Mendeleev Commun. 17, 2007, 175.

  • [103] P.A. Troshin, R. Koeppe, D.K. Susarova, N.V. Polyakova, A.S. Peregudov, V.F. Razumov et al., Trannulenes: a new class of photoactive materials for organic photovoltaic devices, J. Mater. Chem. 19, 2009, 7738.

  • [104] P.A. Troshin, I.P.Romanova, D.K. Susarova, G.G. Yusupova, A.T. Gubaidullin, A.F. Saifina, The first phosphorous-containing fullerene derivative applied as electron acceptor material in organic solar cells, Mendeleev Communications 20, 2010, 137.

  • [105] P.A. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Yu. Mayorova, A.E. Goryachev et al., Material solubility-photovoltaic performance relationship in design of novel fullerene derivatives for bulk heterojunction solar cells, Adv. Funct. Mater. 19, 2009, 779.

  • [106] J.A. Renz, P.A. Troshin, G. Gobsch, V.F. Razumov, H. Hoppe, Fullerene solubility - current density relationship in polymer solar cells, Rapid. Res. Lett., Phys. Stat. Sol. (RRL) 2(6), 2008, 263.

  • [107] D.K. Susarova, E.A. Khakina, P.A. Troshin, A.E. Goryachev, N.S. Sariciftci, V.F. Razumov et al., Photovoltaic performance of PPE-PPV copolymers: effect of the fullerene component, J. Mater. Chem. 21, 2011, 2356.

  • [108] P.A. Troshin, D.K. Susarova, E.A. Khakina, A.E. Goryachev, O.V. Borshchev, S.A. Ponomarenko et al., Material solubility and molecular compatibility effects in the design of the fullerene/polymer composites for organic bulk heterojunction solar cells, J. Mater. Chem. 22, 2012, 18433.

  • [109] C. Kästner, D.K. Susarova, R. Jadhav, D.A.M. Egbe, S. Rathgeber, P.A. Troshin et al., A simple approach for morphology evaluation of polymer-fullerene bulk heterojunctions: an ensemble of different bulk morphologies generated by a variation of fullerene derivatives, J. Mater. Chem. 22, 2012, 15987.

  • [110] D.K. Susarova, P.A. Troshin, Y.L. Moskvin, S.D. Babenko, V.F. Razumov, Vertical concentration gradients in bulk heterojunction solar cells induced by differential material solubility, Thin Solid Films 519, 2011, 4132.

  • [111] D.K. Susarova, A.E. Goryachev, D.V. Novikov, N.N. Dremova, S.M. Peregudova, P.A. Troshin et al., Material solubility effects in bulk heterojunction solar cells based on the biscyclopropane fullerene adducts and P3HT, Sol. Energ. Mater. Sol. Cells 120, 2014, 30.

  • [112] V.A. Kostyanovskiy, P.A. Troshin, G. Adam, N.S. Sariciftci, V.F. Razumov, Investigation of poly(cyclopentadithiophenes) as electron donor materials for organic solar cells, Energy Procedia 31C, 2012, 1.

  • [113] P.A. Troshin, O.A.Mukhacheva, A.E. Goryachev, N.N. Dremova, D. Voylov, C. Ulbricht, Material structure - composite morphology-photovoltaic performance relationship for organic bulk heterojunction solar cells, Chem. Commun. 48, 2012, 9477.

  • [114] D. Gendron, M. Leclerc, New conjugated polymers for plastic solar cells, Energy Environ. Sci. 4, 2011, 1225.

  • [115] N. Yeh, P. Yeh, Organic solar cells: Their developments and potentials, Renewable and Sustainable Energy Reviews 21, 2013, 421.

  • [116] H.J. Son, B. Carsten, I.H. Jung, L. Yu., Overcoming eflciency challenges in organic solar cells: rational development of conjugated polymers, Energy Environ. Sci. 5, 2012, 8158.

  • [117] C.J. Brabec, C.Winder, N.S. Sariciftci, J.C. Hummelen, A. Dhanabalan, P.A. van Hal et al., A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes, Adv. Funct. Mater. 12, 2002, 709.

  • [118] M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger et al., Design rules for donors in bulkheterojunction solar cells - towards 10% energy-conversion efficiency, Adv. Mater., 18, 2006, 789.

  • [119] L.J.A. Koster, V.D. Mihailetchi and P.W.M. Blom, Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells, Appl. Phys. Lett. 88, 2006, 093511.

  • [120] M. Lenes, G.J.A.H. Wetzelaer, F.B. Kooistra, S.C. Veenstra, J.C. Hummelen, P.W.M. Blom, Fullerene bisadducts for enhanced open-circuit voltages and eflciencies in polymer solar cells, Adv. Mater. 20, 2008, 2116.

  • [121] G. Zhao, Y. He, Y. Li, 6.5% eflciency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization, Adv. Mater. 22, 2010, 4355.

  • [122] J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li et al., A robust inter-connecting layer for achieving high performance tandem polymer solar cells, Adv. Mater. 20, 2011, 1.

  • [123] J.M. Frost, M.A. Faist, J. Nelson, Energetic disorder in higher fullerene adducts: a quantum chemical and voltammetric study, Adv. Mater. 22, 2010, 4881.

  • [124] M.A. Faist, P.E. Keivanisis, S. Foster, P.H. Wöbkenberg, T.D. Anthopoulos, D.C. Bradley et al., Effect of multiple adduct fullerenes on charge generation and transport in photovoltaic blends with poly(3-hexylthiophene-2,5-diyl), J. Polym. Sci. B Polym. Phys. 49, 2011, 45-51.

  • [125] D.K. Susarova, A.E. Goryachev, P.A. Troshin and V.F. Razumov, Synthesis and photovoltaic performance of various bisadducts of

  • [60]fullerene. EMRS Spring Meeting and Bilateral (EMRS+MRS) Energy Conference, Symposium S (9-14 May 2011, Nice, France).

  • [126] F.B. Kooistra, J. Knol, F. Kastenberg, L.M. Popescu, W.J.H. Verhees, J.M. Kroon et al., Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMOlevel of the acceptor, Org. Lett., 9, 2007, 551.

  • [127] I. Riedel, E. von Hauff, J. Parisi, N. Martin, F. Giacalone, V. Dyakonov, Diphenylmethanofullerenes: new and eflcient acceptors in bulk heterojunction solar cells, Adv. Funct. Mater. 15, 2005, 1979.

  • [128] H.J. Bolink, E. Coronado, A.F. Aliaga, M. Lenes, A.L. Rosa, S. Filippone et al., Polymer solar cells based on diphenylmethanofullerenes with reduced sidechain length, J. Mater. Chem. 21, 2010, 1382.

  • [129] K.Matsumoto, K. Hashimoto, M. Kamo, Y. Uetani, S. Hayase, T. Itoh et al., Design of fulleropyrrolidine derivatives as an acceptor molecule in a thin layer organic solar cell, J. Mater. Chem. 20, 2010, 9226.

  • [130] A.V. Mumyatov, O.A. Mukhacheva, D.K. Susarova, P.A. Troshin et. al., Chem. Comm. 2014, submitted

  • [131] A.V. Mumyatov, O.A. Mukhacheva, D.K. Susarova, P.A. Troshin et. al., Sol. Energy Mater. Sol. Cells, 2014, submitted

  • [132] A.V. Mumyatov, O.A. Mukhacheva, F.A. Prudnov, D.K. Susarova, P.A. Troshin et. al., J. Mater. Chem C., 2014, submitted

  • [133] M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen and F.C. Krebs, Stability of Polymer Solar Cells, Adv. Mater., 24, 2012, 580.

  • [134] R. Po, A. Bernardi, A. Calabrese, C. Carbonera, G. Corso and A. Pellegrino, From lab to fab: how must the polymer solar cell materials design change? - an industrial perspective, Energy Environ. Sci. 7, 2014, 925.

  • [135] J. Uk Lee, J.W. Jung, J.W. Jo and W.H. Jo, Degradation and stability of polymer-based solar cells, J. Mater. Chem. 22, 2012, 24265.

  • [136] N. Blouin, A. Michaud and M. Leclerc, A low-bandgap poly(2,7- carbazole) derivative for use in high-performance solar cells, Adv. Mater. 19, 2007, 2295.

  • [137] C.H. Peters, I.T.S. Quintana, J.P. Kastrop, S. Beaupré, M. Leclerc and M.D. McGehee, High eflciency polymer solar cells with long operating lifetimes, Adv. Energy Mater. 1, 2011, 491.

  • [138] T. Ameri, G. Dennler, C. Lungenschmied and C.J. Brabec, Organic tandem solar cells: A review, Energy Environ. Sci. 2, 2009, 347.

  • [139] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon et al., Bulk heterojunction solar cells with internal quantum eflciency approaching 100%, Nature Photonics 3, 2009, 297.

  • [140] J.H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao et al., Improved High-Eflciency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer, J. Am. Chem. Soc., 2011, 133, 8416.

  • [141] G. Fang, J. Liu, Y. Fu, B. Meng, B. Zhang, Z. Xie et al., Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode, Organic Electronics 13, 2012, 2733.

  • [142] Z. He, C. Zhong, X. Huang, W.Y. Wong, H. Wu, L. Chen et al., Simultaneous enhancement of open-circuit voltage, shortcircuit current density, and fill factor in polymer solar cells, Adv. Mater. 23, 2011, 4636.

  • [143] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, Toward a rational design of poly(2,7-carbazole) derivatives for solar sells, J. Am. Chem. Soc. 130, 2008, 732.

  • [144] T. Umeyama, Y. Watanabe, E. Douvogianni, H. Imahori, Effect of fluorine substitution on photovoltaic properties of benzothiadiazole-carbazole alternating copolymers, J. Phys. Chem. C 117, 2013, 21148

  • [145] W. Zhao, W. Cai, R. Xu, W. Yang, X. Gong, H. Wu et al., Novel conjugated alternating copolymer based on 2,7-carbazole and 2,1,3-benzoselenadiazole, Polymer 51, 2010, 3196.

  • [146] E. Zhou, M. Nakamura, T. Nishizawa, Y. Zhang, Q. Wei, K. Tajima et al., Synthesis and photovoltaic properties of a novel low band gap polymer based on N-substituted dithieno

  • [3,2- b:2’,3’-d]pyrrole, Macromolecules 41, 2008, 8302.

  • [147] A.V. Akkuratov, D.K. Susarova, O. Kozlov, D.V. Novikov, Y.L. Moskvin, L.A. Frolova, A.V. Chernyak, M.S. Pchenitchnikov, P.A. Troshin, Design of (X-DADAD)n type copolymers with improved optoelectronic properties for bulk heterojunction organic solar cells. Chem. Mater. 2014, submitted

  • [148] N. Banerji, E. Gagnon, P.Y. Morgantini, S. Valouch, A.R. Mohebbi, J.H. Seo et al., Breaking down the problem: optical transitions, electronic structure, and photoconductivity in conjugated polymer PCDTBT and in its separate building blocks, J. Phys. Chem. C 116, 2012, 11456.

  • [149] X. Liu, Y. Sun, L.A. Perez, W. Wen, M.F. Toney, A.J. Heeger et al., Narrow-band-gap conjugated chromophores with extendedmolecular lengths, J. Am. Chem. Soc. 134, 2012, 20609.

  • [150] A.V. Akkuratov, D.K. Susarova, D.V. Novikov, D.V. Anokhin, Y.L. Moskvin, A.V. Chernyak, F.A. Prudnov, S.D. Babenko and P.A. Troshin, Strong effect of the positioning of solubilizing alkyl side chains on optoelectronic and photovoltaic properties of TTBTBTT-based conjugated polymers, J. Mater. Chem. C. 2, 2014, submitted.

  • [151] C. Krohnke, Polymer stabilization, In: in Encyclopedia ofMaterials: Science and Technology, Pergamon, 2001, p. 7507.

  • [152] S.S. Choi, J.H. Jang, Analysis of UV absorbers and stabilizers in polypropylene by liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, Polymer Testing 30, 2011, 673.

  • [153] P. Klán, J. Wirz, Photochemistry of Organic Compounds: From Concepts to Practice.Wiley-Blackwell, Germany, 2009, p. 563.

  • [154] A. Albini, M. Fagnoni, Photochemically-Generated Intermediates in Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, Germany 2013, p. 380.

  • [155] M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules, Wiley-VCH Verlag GmbH & Co. KGaA, New York 1994, p. 357.

  • [156] A.A. Sperlich, H. Kraus, C. Deibel, H. Blok, J. Schmidt, V. Dyakonov, Reversible and irreversible interactions of poly(3- hexylthiophene) with oxygen studied by spin-sensitive methods, J. Phys. Chem. B. 115, 2011, 13513.

  • [157] A. Tournebize, P.O. Bussière, P. Wong-Wah-Chung, S. Thérias, A. Rivaton, J.L. Gardette et al., Impact of UV-visible light on the morphological and photochemical behavior of a low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells, Adv. Energy Mater. 3, 2013, 478.

  • [158] M. Manceau, A. Rivaton, J.L. Gardette, S. Guillerez, N. Lemaitre, Light-induced degradation of the P3HT-based solar cells active layer, Solar Energy Mater. Solar Cells 95, 2011, 1315.

  • [159] A. Tournebize, A. Rivaton, J.L. Gardette, C. Lombard, B.P. Donat, S. Beaupré et al., How photoinduced crosslinking under operating conditions can reduce PCDTBT-based solar cell eflciency and then stabilize it, Adv. Energy Mater. 4, 2014, 1301530.

  • [160] P.A. Troshin, D.K. Susarova, N.P. Piven, E.D. Levchenkova, K.V. Lizgina, Y.L. Moskvin et al., 5th International Symphosium for Polymer Electronics, TPE12 (22-24 May 2012, Rudolstadt, Germany), http://nanorgasol.univpau. fr/Annonces/TPE12_2nd{%}20-09.02.12.pdf

  • [161] E.D. Levchenkova, D.K. Susarova, N.P. Piven, S.D. Babenko, P.A. Troshin, A systematic study of the operational stability of conjugated polymers and organic solar cells made thereof, ICONO/LAT 2013 (June 18-22, 2013, Moscow, Russia), http://www.phys.msu.ru/rus/research/conferences/ICONOLAT- 2013-program.pdf

  • [162] L.A. Frolova, N.P. Piven, D.K. Susarova, A.V. Akkuratov, S.D. Babenko, P.A. Troshin, Dark ESR spectroscopy for monitoring photochemical and thermal degradation of conjugated polymers used as electron donor materials in organic bulk heterojunction solar cells, Chem. Comm., 2014, submitted

  • [163] P.A. Troshin, D.K. Susarova, Y.L. Moskvin, I.E. Kuznetsov, S.A. Ponomarenko, E.N.Myshkovskaya et al., A simple approach to control the quality of conjugated polymers designed for photovoltaic applications, Adv. Funct. Mater. 20, 2010, 4351.

  • [164] D.K. Susarova, N.P. Piven, A.V. Akkuratov, L.F. Frolova, M.S. Polinskaya, S.A. Ponomarenko, S.D. Babenko, P.A. Troshin, ESR spectroscopy as a powerful technique for controlling the quality of conjugated polymers designed for photovoltaic applications, Chem. Comm., 2014, submitted

  • [165] T. Xu, L. Yu, How to design low bandgap polymers for highly eflcient organic solar cells, Materials Today 17, 2014, 11.

  • [166] L. Ye, S. Zhang, L. Huo, M. Zhang, J. Hou, Molecular design toward highly eflcient photovoltaic polymers based on twodimensional conjugated benzodithiophene, Acc. Chem. Res. 2014, 47, 1595.

  • [167] D.K. Susarova, A.S. Peregudov, S.M. Peregudova, P.A. Troshin, New lowmolecular weight electroluminescentmaterials for efficient green organic light emitting diodes (OLEDs), Mendeleev Commun. 24, 2014, 88.

  • [168] D.K. Susarova, D.V. Novikov, P.A. Troshin, Organic light emitting diodes with solution processible organic bulk heterojunction electroluminescent layer, Mendeleev Commun. 24, 2014,85.

  • [169] I.O. Balashova, J.Y. Mayorova, P.A. Troshin, R.N. Lyubovskaya, I.K. Yakushchenko, M.G. Kaplunov, Color tuning in OLED devices based on new perylene derivatives, Mol. Cryst. Liq. Cryst. 467, 2007, 295.

  • [170] J.Y. Mayorova, P.A. Troshin, A.S. Peregudov, S.M. Peregudova, M.G. Kaplunov, R.N. Lyubovskaya, Highly soluble perylene dye: tetrabenzyl ester of 3,4,9,10-perylenetetracarboxylic acid, Mendeleev Commun. 17, 2007, 156.

  • [171] A. Fuchsbauer, O.A. Troshina, P.A. Troshin, R. Koeppe, R.N. Lyubovskaya, N.S. Sariciftci, Luminescent Tags on Fullerenes: Eu3+. Complexes with Pendant Fullerenes, Adv. Funct. Mater. 18, 2008, 2808.

  • [172] V.A. Kostyanovsky, D.K. Susarova, G. Adam, R.N. Lyubovskaya, P.A. Troshin, A novel cyclopentadithiophene-fluorene copolymer for organic solar cells and light emitting diodes, Mendeleev Commun. 23, 2013, 26.

  • [173] I.V. Klimovich, L.I. Leshanskaya, S.I. Troyanov, D.V. Anokhin, D.V. Novikov, P.A. Troshin et al., Design of indigo derivatives as environment-friendly organic semiconductors for sustainable organic electronics, J. Mater. Chem. C 2, 2014, 7621.

  • [174] D.V. Anokhin, L.I. Leshanskaya, A.A. Piryazev, D.K. Susarova, N.N. Dremova, P.A. Troshin et al., Towards understanding the behavior of indigo thin films in organic field-effect transistors: a template effect of the aliphatic hydrocarbon dielectric on the crystal structure and electrical performance of the semiconductor, Chem. Commun. 50, 2014, 7639.

  • [175] M. Irimia-Vladu, E.D. Głowacki, P.A. Troshin, G. Schwabegger, L. Leonat, D. K. Susarova et al., Indigo - a natural pigment for high performance ambipolar organic field effect transistors and circuits, Adv. Mater. 24, 2012, 375.

  • [176] M. Irimia-Vladu, P.A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwödiauer et al., Sustainable organic field effect transistors, Organic Electronics 11, 2010, 1974.

  • [177] M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger et al., Biocompatible and biodegradable materials for organic field effect transistors, Adv. Funct. Mater. 2010, 20, 4069.

  • [178] A.V.Mumyatov, L.I. Leshanskaya, D.V. Anokhin, N.N. Dremova, P.A. Troshin, Organic field-effect transistors based on disubstituted perylene diimides: effect of the alkyl chains on the device performance, Mendeleev Commun. 24, 2014, 306.

  • [179] E.A. Kleymyuk, P.A. Troshin, Yu. N. Luponosov, E.A. Khakina, Yu. L. Moskvin, S.M. Peregudova et al., Three dimensional quater- and quinquethiophenesilanes as promising electron donormaterials for bulk heterojunction photovoltaic cells and photodetectors, Energy Environ. Sci. 3, 2010, 1941.

  • [180] D.K. Susarova, P.A. Troshin, D. Höglinger, R. Koeppe, S.D. Babenko, R.N. Lyubovskaya et al., An effect of a donoracceptor complex formation on a performance of evaporated small molecular organic photovol taic cells, Sol. EnergyMater. Sol. Cells 94, 2010, 803.

  • [181] P.A. Troshin, S.A. Ponomarenko, Y.N. Luponosov, E.A. Khakina, M. Egginger, T. Meyer-Friedrichsen et al., Eflcient solutionprocessible organic solar cells using quaterthiophene-based multipods as electron donormaterials, Sol. EnergyMater. Sol. Cells 94, 2010, 2064.

  • [182] L.A. Frolova, D.K. Susarova, N.A. Sanina, P.A. Troshin and Sergey M. Aldoshin, Photoswitchable organic field effect transistors and memory elements comprising interfacial photochromic layer, Chem. Comm., 2014, submitted

OPEN ACCESS

Journal + Issues

Search