Hyperspectral imaging of polymer/fullerene blends

Armida Torreggiani 1 , Francesca Tinti 1 , Alberto Savoini 1 , 2 , Michele Melchiorre 1 , Riccardo Po 1 , 2 ,  and Nadia Camaioni 1
  • 1 Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche via Gobetti 101, I-40129 Bologna, Italy
  • 2 Research Center for non Conventional Energies, Istituto eni Donegani, eni S.p.A. via Fauser 4, I-28100 Novara, Italy

Abstract

The effectiveness of a hyperspectral imaging system integrated on an enhanced dark-field microscope for probing the microscale morphology of model poly(3- hexylthiopene): [6,6]-phenyl-C61- butyric acid methyl ester (P3HT:PCBM) blends is demonstrated. This non-contact technique provides both spectral and spatial information in one measurement, providing an effective mapping of the presence and location of the component materials in the investigated P3HT:PCBM blends spincoated over different substrates (zinc oxide, poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate). The hyperspectral analysis accounts for the micro-scale morphology of P3HT:PCBM blends, even in case of high film roughness, and the quantitative determination of blend components reveals a preferential accumulation of the lowenergy material (P3HT) at the interface with air, confirming the findings reported with other mapping techniques

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).

  • [2] G. Yu, A. J. Heeger, J. Appl. Phys. 78, 4510 (1995).

  • [3] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 376, 498 (1995).

  • [4] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nature Photon. 6, 591 (2012).

  • [5] X. Guo, N. Zhou, S. J. Lou, J. Smith, D. B. Tice, J. W. Hennek, R. Ponce Ortiz, J. T. López Navarrete, S. Li, J. Strzalka, L. X. Chen, R. P. H. Chang, A. Facchetti, T. J. Marks, Nature Photon. 7, 825 (2013).

  • [6] S.-H. Liao, H.-J. Jhuo, Y.-S. Cheng, S.-A. Chen, Adv. Mater. 25, 4766 (2013).

  • [7] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed May 2014).

  • [8] Y. Li, Accounts Chem. Res. 45, 723 (2012).

  • [9] C. J. Brabec, M. Heeney, I.McCulloch, J. Nelson, Chem. Soc. Rev. 40, 1185 (2011).

  • [10] G. Li, R. Zhu, Y. Yang, Nature Photon. 6, 153 (2012).

  • [11] P. Westacott, J. R. Tumbleston, S. Shoaee, S. Fearn, J. H. Bannock, J. B. Gilchrist, S. Heutz, J. deMello, M. Heeney, H. Ade, J. Durrant, D. S. McPhaila, N. Stingelin, Energy Environ. Sci., 6, 2756 (2013).

  • [12] A. Pivrikas, N. S. Sariciftci, G. Juška, R. Österbacka, Prog. Photovolt: Res. Appl. 15, 677 (2007).

  • [13] W.Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct.Mater. 15, 1617 (2005).

  • [14] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Mater. 4, 864 (2005).

  • [15] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nature Mater. 6, 497 (2007).

  • [16] M. Campoy-Quiles, V. Randon, M. M. Mróz, M. Jarzaguet, M. Garriga, J. Cabanillas-González, Org. Photonics Photovolt. 1, 11 (2013).

  • [17] L.-M. Chen, Z. Hong, G. Li, Y. Yang, Adv.Mater. 21, 1434 (2009).

  • [18] T. A. Harris, Cytometry Part A 69A, 872 (2006).

  • [19] B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, M. W. Dewhirst. J. Biomed. Opt. 10, 44004 (2005).

  • [20] G. Sacco Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, A. Torreggiani, J. Biophotonics 6, 960 (2013)

  • [21] H. Grahn, P. Geladi, in: Techniques and Applications of Hyperspectral Image Analysis (John Wiley and Sons Ltd: Chichester, West Sussex, 2009) p. 361.

  • [22] A. R. Badireddy, M. R.Wiesner, J. Liu, Environ. Sci. Technol. 46, 10081 (2012).

  • [23] M. C. Scharber, D.Mühlbacher, M. Koppe, P. Denk, C.Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 18, 789 (2006).

  • [24] B. A. Collins, J. R. Tumbleston, H. Ade, J. Phys. Chem.Lett. 2, 3135 (2011).

  • [25] C. H. Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupre, M. Leclerc, M. D. McGehee, Adv. Energy Mater. 1, 491 (2011).

  • [26] L. Chang, H. W. A. Lademann, J.-B. Bonekamp, K. Meerholz, A. Moulé, Adv. Funct. Mater. 21, 1779 (2011).

  • [27] D. R. Kozub, K. Vakhshouri, L. M. Orme, C. Wang, A. Hexemer, E. D. Gomez, Macromolecules 44, 5722 (2011).

  • [28] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).

  • [29] G. Li, V. Shrotriya, Y. Yao, J. Huang, Y. Yang, J. Mater. Chem. 17, 3126 (2007).

  • [30] R. C. Hiorns, R. de Bettignies, J. Leroy, S. Bailly, M. Firon, C. Sentein, A. Khoukh, H. Preud’homme, C. Dagron-lartigau, Adv. Funct. Mater. 16, 2263 (2006).

  • [31] T. J. Savenije, J. E. Kroeze, X. N. Yang, J. Loos, Adv. Funct.Mater. 15, 1260 (2005).

  • [32] A. Swinnen, I. Haeldermans, M. vande Ven, J. D’Haen, G. Vanhoyland, S. Aresu, M. D’Olieslaeger, J. Manca, Adv. Funct. Mater. 16, 760 (2006).

  • [33] X. Yang, J. K. J. van Duren, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, M. A. J. Michels, J. Loos, Adv. Mater. 16, 802 (2004).

  • [34] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, Nature Mater. 7, 158 (2008).

  • [35] R. Po, C. Carbonera, A. Bernardi, N. Camaioni, Energy Environ. Sci., 4, 285 (2011).

  • [36] R. M. Beal, A. Stavrinadis, J. H. Warner, J. M. Smith, H. E. Assender, A. A. R. Watt, Macromolecules 43, 2343 (2010).

  • [37] S. A. Mauger, L. Chang, S. Friedrich, C. W. Rochester, D. M. Huang, P. Wang, A. J. Moulé, Adv. Funct. Mater. 23, 1935 (2013).

  • [38] H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes- Hernandez, K. H. Sandhage, B. Kippelen, Energy Environ. Sci. 4, 3456 (2011).

  • [39] J. Y. Oh, W. S. Jang, T. I. Lee, J.-M. Myoung, H. K. Baik, Appl. Phys. Lett. 98, 023303 (2011).

  • [40] C. M. Björström., S. Nilsson, A. Bernasik, A. Budkowski, M. Andersson, K. O. Magnusson, E. Moons, Appl. Surf. Sci., 253, 3906 (2007).

  • [41] Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, Y. Yang, Adv. Funct. Mater. 19, 1227 (2009).

  • [42] M. Passos Felicissimo, D. Jarzab, M. Gorgoi, M. Forster, U. Scherf, M. C. Scharber, S. Svensson, P. Rudolf, M. A. Loi, J. Mater. Chem. 19, 4899 (2009).

  • [43] B. Watts, W. J. Belcher, L. Thomsen, H. Ade, P. C. Dastoor, Macromolecules 42, 8392 (2009).

  • [44] I.-J. Wang, S.-C. Shiu, M.-Y. Lin, J.-S. Huang, Y.-H. Lin, C.-F. Lin, Sol. Energy Mater. Sol. Cells 94, 1681 (2010).

  • [45] D. S. Germack, C. K. Chan, R. J. Kline, D. A. Fischer, D. J. Gundlach, M. F. Toney, L. J. Richter, D. M. DeLongchamp, Macromolecules 43, 3828 (2010).

  • [46] H. Lu, B. Akgun, T. P. Russell, Adv. Energy Mater. 1, 870 (2011).

  • [47] J. Bandara, K. Shankar, C. A. Grimes, M. Thelakkat, Thin Solid Films 520, 582, (2011).

  • [48] Y. Jouane, S. Colis, G. Schmerber, C. Leuvrey, A. Dinia, P. Lévèque, T. Heiser, Y.-A. Chapuis, J. Mater. Chem. 22, 1606 (2012).

  • [49] O. Oklobia, T. S. Shafai, Solid State Electron. 87, 64 (2013).

  • [50] C. Koidis, S. Logothetidis, A. Ioakeimidis, A. Laskarakis, C. Kapnopoulos, Org. Electron. 14, 1744 (2013).

  • [51] M. D. Clark, M. L. Jespersen, R. J. Patel, B. J. Leever, ACS Appl. Mater. Interf. 5, 4799 (2013).

  • [52] E. Pavlopoulou, G. Fleury, D. Deribew, F. Cousin, M. Georghegan, G. Hadziioannou, Org. Electron. 14, 1249 (2013).

  • [53] S. van Bavel, E. Sourty, G. de With, K. Frolic, J. Loos, Macromolecules 42, 7396 (2009).

OPEN ACCESS

Journal + Issues

Organic Photonics and Photovoltaics (OPP) is an international, peer-reviewed journal publishing original research and reviews in the field of organic materials synthesis, fundamental opto-electronic properties, new fabrication approaches for applications in high performance photonic devices. OPP welcomes theoretical and experimental papers on all aspects ranging from fundamental sciences to commercial applications.

Search