Running Droplet Optical Multiplexer

Lukas Brandhoff 1 , Mahmuda Akhtar 1 , Mike Bülters 2 , Ralf B. Bergmann 2  and Michael J. Vellekoop 1
  • 1 Institute for Microsensors, -acuators and -systems / Microsystems Center Bremen (IMSAS/MCB), University of Bremen, Bremen, Germany
  • 2 BIAS - Bremer Institut für angewandte Strahltechnik, Bremen, Germany

Abstract

We present an optofluidic device for switching light from multiple inputs to one common output. The device uses a microfluidic channel filled with high index of refraction oil as a waveguide, and moves low refractive index interruptions in the form of aqueous droplets through the channel. Whenever a droplet passes one of the optical inputs, this specific input is switched through to the output. This produces a running switching of one output following the other creating a 8x1 multiplexer.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. Pawley, Handbook of biological confocal microscopy. Springer, 2010.

  • [2] M. Rosenauer, M. J. Vellekoop, Characterization of a Microflow Cytometer with an Integrated 3D Optofluidic Lens System, Biomicrofluidics 4, 043005 (12 pages), 2010.

  • [3] V. Fioravanti, E. Weber, S. van den Driesche, M. J. Vellekoop, D. Pucciarelli, H. Breiteneder, and C. Hafner, Biopsy analysis using a quadruple infrared sensor, IEEE SENSORS, 2013 pp.1,4, 3-6 Nov. 2013.

  • [4] E. Weber, M. J. Vellekoop, Optofluidic micro-sensors for the determination of liquid concentrations, Lab Chip. 2012 (19):3754- 9.

  • [5] L. Brandhoff, E. Weber, S. van den Driesche, M. Bülters, R. B. Bergmann, and M. J. Vellekoop, Optofluidic multiplexing and switching device, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), pp.2329,2332, 16-20 June 2013.

  • [6] E. Weber, D. Puchberger-Enengl, F. Keplinger, et al., In-line characterization and identification of micro-droplets on-chip. Optofluidics, Microfluidics and Nanofluidics, (2013).

  • [7] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction— scaling and mechanism of break-up, Lab on a Chip, Bd. 6, No. 3, S. 437, 2006.

  • [8] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Analytical Chemistry, Bd. 70, No. 23, S. 4974–4984, Dec. 1998.

  • [9] Microchem, SU-8 3000 Permanent Epoxy Negative Photoresist Datasheet, http://www.microchem.com/pdf/SU- 8{%}203000{%}20Data{%}20Sheet.pdf.

  • [10] F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS, Sensors and Actuators A: Physical, Bd. 151, No. 2, S. 95–99, Apr. 2009.

  • [11] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2007.

OPEN ACCESS

Journal + Issues

This is a peer-reviewed Open Access journal, devoted to the publication of research and applied data from the full spectrum of Optofluidics, Microfluidics and Nanofluidics; designed to facilitate the exchange of ideas between researchers and especially practitioners from different disciplines ranging from biology to chemistry to engineering.

Search