Time dependent magnetically induced variations in optical transmission of magnetite nanoparticle aqueous suspension

Serhiy Malynych 1  and Iryna Moroz 2
  • 1 V.E Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, 41 Nauky Ave., 03028, Kyiv, Ukraine
  • 2 National University ‘Lviv Polytechnica’, 12 S. Bandery Str., 79013, Lviv, Ukraine

Abstract

We observe time dependent variations in the light intensity transmitted through an aqueous suspension of Fe3O4 nanoparticles caused by applied DC magnetic field. Two types of variations can be distinguished. Fast response takes less than 1ms while slow variations occur at the time interval fromseconds to hundreds of minutes. Possible mechanisms of these variations are discussed. Formation of chain-like structures consisted from iron oxide nanoparticles is responsible for the slow variations. It is also accompanied by a diffraction pattern when the magnetic field is orthogonal to the light beam. Fast variations are due to particle rotation and reorientation of the magnetic moment inside a nanoparticle.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] B. A. Larsen, M. A. Haag, N. J. Serkova, K. R. Shroyer, C. R. Stoldt, Nanotechnology 19, 265102 (2008) http://dx.doi.org/10.1088/0957-4484/19/26/265102

  • [2] F. Cengelli, D. Maysinger, F. Tschudi-Monnet, J. Pharm. Exp. Ther. 318, 108 (2006) http://dx.doi.org/10.1124/jpet.106.101915

  • [3] P. A. Valberg, H. A. Feldman, Biophys J. 52, 551 (1987) http://dx.doi.org/10.1016/S0006-3495(87)83244-7

  • [4] C. H. Setchell, J. Chem. Tech. Biot. B 35, 175 (1985) http://dx.doi.org/10.1002/jctb.280350302

  • [5] R. Hergt, S. Dutz, R. Muller, M. Zeisberger, J. Phys.-Condens. Mat. 18, S2919 (2006) http://dx.doi.org/10.1088/0953-8984/18/38/S26

  • [6] B. Gleich, J. Weizenecker, Nature 435, 1214 (2005) http://dx.doi.org/10.1038/nature03808

  • [7] S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, S. Chikazumi, J. Phys. Soc. Jpn. 56, 3362 (1987) http://dx.doi.org/10.1143/JPSJ.56.3362

  • [8] S. Chikazumi, et al., J. Magn. Magn. Mater. 65, 245 (1987) http://dx.doi.org/10.1016/0304-8853(87)90043-6

  • [9] E. S. Kooij, A. C. Galca, B. Poelsema, J. Colloid Interf. Sci. 304, 261 (2006) http://dx.doi.org/10.1016/j.jcis.2006.08.062

  • [10] Yu. A. Barnakov, et al., J. Phys. Chem. Solids 65, 1005 (2004) http://dx.doi.org/10.1016/j.jpcs.2003.10.070

  • [11] C. P. Singh, K. S. Bindra, G. M. Bhalerao, S. M. Oak, Opt. Express 16, 8440 (2008) http://dx.doi.org/10.1364/OE.16.008440

  • [12] C. F. Hayes, J. Colloid Interf. Sci. 52, 239 (1975) http://dx.doi.org/10.1016/0021-9797(75)90194-0

  • [13] V. Socoliuc, et al., J. Magn. Magn. Mater. 191, 241 (1999) http://dx.doi.org/10.1016/S0304-8853(98)00251-0

  • [14] M. Ivey, J. Liu, Y. Zhu, S. Cutillas, Phys. Rev. E 63, 011403 (2000) http://dx.doi.org/10.1103/PhysRevE.63.011403

  • [15] W. E. L. Haas, J. E. Adams, Appl. Phys. Lett. 27, 571 (1975) http://dx.doi.org/10.1063/1.88299

  • [16] C. Rablau, et al., Phys. Rev. E 78, 051502 (2008) http://dx.doi.org/10.1103/PhysRevE.78.051502

  • [17] J. Philip, J. M. Laskar, B. Raj, Appl. Phys. Lett. 92, 221911 (2008) http://dx.doi.org/10.1063/1.2939100

  • [18] J. M. Laskar, J. Philip, B. Raj, Phys. Rev. E 78, 031404 (2008) http://dx.doi.org/10.1103/PhysRevE.78.031404

  • [19] R. Massart, IEEE T. Magn. 17, 1247 (1981) http://dx.doi.org/10.1109/TMAG.1981.1061188

  • [20] V. Socoliuc, D. Bica, Prog. Coll. Pol. Sci. S. 117, 131 (2001) http://dx.doi.org/10.1007/3-540-45405-5_25

  • [21] S. Z. Malynych, et al., J. Magn. Magn. Mater. 322, 1894 (2010) http://dx.doi.org/10.1016/j.jmmm.2010.01.003

  • [22] J. Li, et al., J. Phys. D Appl. Phys. 37, 3357 (2004) http://dx.doi.org/10.1088/0022-3727/37/24/001

  • [23] J. Li, et al., Appl. Phys. Lett. 91, 253108 (2007) http://dx.doi.org/10.1063/1.2825464

  • [24] M. I. Shliomis, Usp. Fiz. Nauk+ 112, 427 (1974) (in Russian) http://dx.doi.org/10.3367/UFNr.0112.197403b.0427

  • [25] D. M. Bhagat, R. V. Mehta, H. S. Shah, Appl. Optics. 19, 3536 (1980) http://dx.doi.org/10.1364/AO.19.003536

  • [26] J. L. Garcia-Palacios, F. J. Lazaro, Phys. Rev. B 58, 14937 (1998) http://dx.doi.org/10.1103/PhysRevB.58.14937

  • [27] D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, M. Muhammed, J. Magn. Magn. Mater. 225, 30 (2001) http://dx.doi.org/10.1016/S0304-8853(00)01224-5

  • [28] W. Voit, D. K. Kim, W. Zapka, M. Muhammed, K. V. Rao, Mater. Res. Soc. Symp. P. 676, Y7.8.1 (2001)

  • [29] S. A. Rovers, R. Hoogenboom, M. F. Kemmere, J. T. F. Keurentjes, J. Phys. Chem. C 112, 15643 (2008) http://dx.doi.org/10.1021/jp805631r

  • [30] K. Butter, P. H. Bomans, P. M. Frederik, G. J. Vroege, A. P. Philipse, J. Phys.-Condens. Mat. 15, S1451 (2003) http://dx.doi.org/10.1088/0953-8984/15/15/310

  • [31] R. Hergt, et al., J. Magn. Magn. Mater. 270, 345 (2004) http://dx.doi.org/10.1016/j.jmmm.2003.09.001

  • [32] A. Demortiére, et al., Nanoscale 3, 225 (2011) http://dx.doi.org/10.1039/c0nr00521e

OPEN ACCESS

Journal + Issues

Search