Study of the thermal stability of Zerodur glass ceramics suitable for a scanning probe microscope frame

Ondřej Číp 1 , Radek Šmíd 1 , Martin Čížek 1 , Zdeněk Buchta 1 , and Josef Lazar 1
  • 1 Institute of Scientific Instruments of the ASCR, v.v.i. Academy of Sciences of the Czech Republic, Královopolská 147, 612 64, Brno, Czech Republic


The work presents measurements of the length stability of Zerodur glass ceramic with temperature change. Measurement of this thermal characteristic is necessary for determination of the optimal temperature at which the Zerodur glass ceramic has a coefficient of thermal expansion close to zero. The principle of the measurement is to monitor the length changes using an optical resonator with a cavity mirror spacer made from the Zerodur material to be studied. The resonator is placed inside a vacuum chamber with a temperature control. A tunable laser diode is locked to a certain optical mode of the resonator to monitor the optical frequency of this mode. A beat-note signal from optical mixing between the laser and a stabilized femtosecond frequency comb is detected and processed. The temperature dependence of the glass ceramics was determined and analyzed. The resolution of the length measurement of the experimental set-up is on the order of 0.1 nm.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] H. Bach and D. Krause (Ed.), Low thermal expansion glass ceramics, 2nd edition (Springer-Verlag, Berlin Heidelberg, 2005)

  • [2] O. Lindig, W. Pannhorst, Appl. Optics 24, 3330 (1985)

  • [3] J. H. Burge, T. Peper, S. F. Jacobs, Appl. Optics 38, 7161 (1999)

  • [4] S. T. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003)

  • [5] R. ŠmÍd et al., 17th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, Sep. 6–10, 2010, Janska Dolina, Slovakia (SPIE, 2010) 77460I

  • [6] J. Oulehla et al., Optical Measurement Systems for Industrial Inspection VII, May. 22–26, 2011, Munich, Germany (SPIE, 2011) 80823Q

  • [7] H. R. Telle et al., Appl. Phys. B 69, 327 (1999)

  • [8] M. Bellini, T. W. Haensch, Opt. Lett. 25, 1049 (2000)

  • [9] J. K. Ranka, R. S. Windeler, A. J. Stentz, Opt. Lett. 25, 25 (2000)

  • [10] R. Šmíd, O. Číp, J. Lazar, Meas. Sci. Rev. 8, 114 (2008)

  • [11] R. Šmíd, O. Číp, M. Čížek, B. Mikel, J. Lazar, IEEE T. Ultrason. Ferr. 57, 636 (2010)

  • [12] K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, J. Opt. Soc. Am. B 13, 2708 (1996)

  • [13] I. Mitra et al., Emerging Lithographic Technologies VIII, Feb. 24–26, 2004, Santa Clara, California, USA (SPIE, Bellingham, USA, 2004) 96

  • [14] J. Ye, J. L. Hall, S. A. Diddams, Opt. Lett. 25, 1675 (2000)

  • [15] W. Liu, J. J. Talghader, Appl. Optics 41, 3285 (2002)


Journal + Issues