We investigate the pitch transitions induced by an external bulk field in a Cholesteric Liquid Crystal slab of finite thickness ℓ that contains an incomplete number of π-twists. The analysis is performed for a magnetic field that is (i) perpendicular to the helical axis, and (ii) tilted with respect to one of the easy directions imposed by planar and rigid boundary conditions. For finite ℓ we obtain a cascade of transitions, where the bulk expels a half-pitch at a time with increasing field to avoid divergences in the elastic energy. The dependence of the threshold magnetic field inducing the expulsion on the easy axes twist angle δ is investigated for all the cascade of pitch transitions and in particular for the final one, corresponding to the Cholesteric-Nematic transition. In the ℓ → ∞ limit this dependence disappears and we reobtain the results of de Gennes for an infinite sample.
[1] V. Fredericks, V. Zolina, Trans. Faraday Soc. 29, 919 (1933) http://dx.doi.org/10.1039/tf9332900919
[2] W. Helfrich, Appl. Phys. Lett. 17, 531 (1970) http://dx.doi.org/10.1063/1.1653297
[3] J.P. Hurault, J. Chem. Phys. 59, 2068 (1973) http://dx.doi.org/10.1063/1.1680293
[4] I. Lelidis, M. Nobili, G. Durand, Phys. Rev. E 48, 3818 (1993) http://dx.doi.org/10.1103/PhysRevE.48.3818
[5] I. Lelidis, Phys. Rev. Lett. 86, 1267 (2001) http://dx.doi.org/10.1103/PhysRevLett.86.1267
[6] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993)
[7] L.M. Blinov, Structure and Properties of Liquid Crystals (Springer, 2001)
[8] M. Kleman, O.D. Lavrentovich, Soft Matter Physics: An Introduction (Springer, 2002)
[9] P. Seng, Phys. Rev. Lett. 37, 1059 (1976) http://dx.doi.org/10.1103/PhysRevLett.37.1059
[10] T.J. Sluckin, A. Poniewierski, In: Fluid Interfacial Phenomena, edited by C.A. Croxton, 215 (John Wiley, Chichester, 1986)
[11] T.J. Sluckin, Physica A 213, 105 (1995) http://dx.doi.org/10.1016/0378-4371(94)00151-I
[12] G. Barbero, L.R. Evangelista, An Elementary Course on the Continuum Theory for Nematic Liquid Crystals (World Scientific, 2001)
[13] I. Lelidis, P. Galatola, Phys. Rev. E 66, 10701 (2002) http://dx.doi.org/10.1103/PhysRevE.66.010701
[14] P.G. de Gennes, Solid State Commun. 6, 163 (1968) http://dx.doi.org/10.1016/0038-1098(68)90024-0
[15] R.B. Meyer, Appl. Phys. Lett. 12, 281 (1968) http://dx.doi.org/10.1063/1.1651992
[16] G. Durand, L. Leger, I. Rondelez, M. Veyssie, Phys. Rev. Lett. 22, 227 (1969) http://dx.doi.org/10.1103/PhysRevLett.22.227
[17] R.B. Meyer, Appl. Phys. Lett. 14, 208 (1969) http://dx.doi.org/10.1063/1.1652780
[18] R. Dreher, Solid State Commun. 13, 1571 (1973) http://dx.doi.org/10.1016/0038-1098(73)90239-1
[19] P.J. Kedney, I.W. Stewart, Continuum. Mech. Thermodyn. 6, 141 (1994) http://dx.doi.org/10.1007/BF01140895
[20] V.A. Belyakov, JETP Lett. 76, 88 (2002) http://dx.doi.org/10.1134/1.1510064
[21] S.V. Belyaev, L.M. Blinov, JETP Lett. 30, 99 (1979)
[22] E. Niggemann, H. Stegemeyer, Liq. Cryst. 5, 739 (1989) http://dx.doi.org/10.1080/02678298908045424
[23] P. Oswald, J. Baudry, S. Pirkl, Phy. Rep. 337, 67 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00056-9
[24] A.M. Scarfone, I. Lelidis, G. Barbero, Phys. Rev. E 84, 021708 (2011) http://dx.doi.org/10.1103/PhysRevE.84.021708
[25] M. Abramowitz, I.A. Stegun, Handbook of mathematical function, (Dover pubblication, Inc. New York, 1970)