We investigate the effect of the isotropic velocity-dependent potentials on the bound state energy eigenvalues of the Morse potential for any quantum states. When the velocity-dependent term is used as a constant parameter, ρ(r) = ρ 0, the energy eigenvalues can be obtained analytically by using the Pekeris approximation. When the velocity-dependent term is considered as an harmonic oscillator type, ρ(r) = ρ 0 r 2, we show how to obtain the energy eigenvalues of the Morse potential without any approximation for any n and ℓ quantum states by using numerical calculations. The calculations have been performed for different energy eigenvalues and different numerical values of ρ 0, in order to show the contribution of the velocity-dependent potential on the energy eigenvalues of the Morse potential.
[1] L.S. Kisslinger, Phys. Rev. 98, 761 (1955) http://dx.doi.org/10.1103/PhysRev.98.761
[2] M. Razavy, G. Field, J. S. Levinger, Phys. Rev. 125, 269 (1962)
[3] M.A.K. Lodhi, Phys. Rev. 182, 1061 (1969) http://dx.doi.org/10.1103/PhysRev.182.1061
[4] M.A. K. Lodhi, Phys. Rev. C 1, 365 (1970) http://dx.doi.org/10.1103/PhysRevC.1.365
[5] A.E. S. Green, G. Darewych, R. Berezdivin, Phys. Rev. 157, 929 (1967) http://dx.doi.org/10.1103/PhysRev.157.929
[6] L.D. Miller, A. E. S. Green, Phys. Rev. 184, 1012 (1969) http://dx.doi.org/10.1103/PhysRev.184.1012
[7] A.E. S. Green, D. E. Rio, T. Ueda, Phys. Rev. A 24, 3010 (1981) http://dx.doi.org/10.1103/PhysRevA.24.3010
[8] L.I. Serra, E. Lipparini, Europhys. Lett. 40, 667 (1997) http://dx.doi.org/10.1209/epl/i1997-00520-y
[9] M. Barranco, M. Pi, S. M. Gatica, E. S. Hernández, J. Navarro, Phys. Rev. B 56, 8997 (1997) http://dx.doi.org/10.1103/PhysRevB.56.8997
[10] M.R. Geller, W. Kohn, Phys. Rev. Lett. 70, 3103 (1993) http://dx.doi.org/10.1103/PhysRevLett.70.3103
[11] M.I. Jaghoub, Eur. Phys. J. A 11, 175 (2001) http://dx.doi.org/10.1007/s100500170083
[12] M.I. Jaghoub, Eur. Phys. J. A 13, 349 (2001) http://dx.doi.org/10.1007/s10050-002-8763-8
[13] M.I. Jaghoub, Eur. Phys. J. A 15, 443 (2002) http://dx.doi.org/10.1140/epja/i2002-10055-3
[14] M.I. Jaghoub, Eur. Phys. J. A 27, 99 (2006) http://dx.doi.org/10.1140/epja/i2005-10192-1
[15] M.I. Jaghoub, Eur. Phys. J. A 28, 253 (2006) http://dx.doi.org/10.1140/epja/i2006-10047-3
[16] M.I. Jaghoub, Phys. Rev. A 74, 032702 (2006) http://dx.doi.org/10.1103/PhysRevA.74.032702
[17] O. Bayrak, A. Soylu, I. Boztosun, Chinese Phys. Lett. 28, 040304 (2011) http://dx.doi.org/10.1088/0256-307X/28/4/040304
[18] P.M. Morse, Phys. Rev. 34, 57 (1929) http://dx.doi.org/10.1103/PhysRev.34.57
[19] C.L. Pekeris, Phys. Rev. 45, 98 (1934) http://dx.doi.org/10.1103/PhysRev.45.98
[20] D.A. Morales, Chem. Phys. Lett. 394, 68 (2004) http://dx.doi.org/10.1016/j.cplett.2004.06.109
[21] O. Bayrak, I. Boztosun, J. Phys. A: Math. Gen. 39, 6955 (2006) http://dx.doi.org/10.1088/0305-4470/39/22/010
[22] O. Bayrak, I. Boztosun, J. Phys. A: Math. Gen. 40, 11119 (2007) http://dx.doi.org/10.1088/1751-8113/40/36/012
[23] I. Boztosun, D. Bonatsos, I. Inci, Phys. Rev. C 77, 044302 (2008)
[24] H. Ciftci, R. L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003) http://dx.doi.org/10.1088/0305-4470/36/47/008
[25] H. Ciftci, R. L. Hall, N. Saad, J. Phys. A: Math. Gen. 38, 1147 (2005) http://dx.doi.org/10.1088/0305-4470/38/5/015