Synthesis and characterization of structural and luminescence properties of blue — green BaAlxOy:Eu2+ phosphor by solution — combustion method

Francis Dejene 1  and Mesfin Kebede 1
  • 1 Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba, 9866, South Africa


Europium-doped barium aluminate (BaAlxOy:Eu2+) phosphors were obtained at low temperatures (500°C) using the solution — combustion of corresponding metal nitrate-urea solution mixtures. The particle size and morphology and the structural and luminescent properties of the synthesized phosphors were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Electron diffraction spectroscopy (EDS) and photoluminescence (PL). It was found that the change in Ba: Al molar ratios showed greatly influence not only on the particle size and morphology, but also on their PL spectra and crystalline structure. The structure of BaAlxOy nanophosphors changes from a hexagonal Ba2Al10O17 phase for samples with 6:100 molar ratios to a hexagonal BaAl2O4 one with an increase in Ba content. The peak of the emission band occurs at a longer wavelength (around 615 nm) with a decrease in Ba concentration but displays a broad blue-green emission band composed from two emissions with the maximum at 495 and 530nm coming from Eu2+ in two sites for increasing Ba content. The blue-green emission is probably due to the influence of 5d electron states of Eu2+ in the crystal field because of atomic size variation causing crystal defects while the red emission is due to f - f transitions. These findings clearly demonstrate the possibility of fine tuning the colour emission.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] L. Zhou, W. C. H. Choy, J. Shi, M. Gong, H. Liang, Mater. Chem. Phys. 100, 372 (2006)

  • [2] B. Yan, X. Q. Su, Opt. Mater. 29, 547 (2007)

  • [3] W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, Solid State Commun. 134, 717 (2005)

  • [4] Y. Q. Li, C. M. Fang, G. de With, H. T. Hintzen, J. Solid State Chem. 177, 4681 (2004)

  • [5] M. Yu, J. Lin, J. Fu, H.J. Zhang, Y.C. Han, J. Mater. Chem. 13, 1413 (2003)

  • [6] M. Leskel, L. Niinist, Mater. Chem. Phys. 31, 7 (1992)

  • [7] G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

  • [8] T. Matsuzawa, Y. Aoki, M. Takeuchi, and Y. Murayama, In: Proceedings of 188th Meeting of the Electrochemical Society, 160 (Chicago, IL, Oct. 8–13, 1995)

  • [9] Y. Murayama, Sci. Am. Jpn. 26, 20 (1996)

  • [10] T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, J. Electrochem. Soc. 143, 2610 (1996)

  • [11] H. Takasaki, S. Tanabe, and T. Hanada, J. Ceram. Soc. Jpn. 104, 322 (1995)

  • [12] F. C. Pallila, A. K. Levine, and M. R. Tomkus, J. Electrochem. Soc. 115, 642 (1968)

  • [13] V. Abbruscato, J. Electrochem. Soc. 118, 930 (1971)

  • [14] T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, T. Morikawa, J. Electrochem. Soc. 144, L243 (1997)

  • [15] R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, J. Lumines. 85, 149 (1999)

  • [16] F. B. Dejene, D. B. Bem, H. C. Swart, J. Rare Earth. 28, 272 (2010)

  • [17] G. Blasse and B. C. Grabmaier, In: Luminescent Materials, 33 (Springer-Verlag, Berlin, 1994)

  • [18] Y. Q. Lu, Y. X. Li, Y. H. Xiong, D. Wang, Q. R. Yin, Microelectron.J. 35, 379 (2004)

  • [19] G. Blasse, and A. Bril, Philips Res. Rep. 23, 201 (1968)

  • [20] J. Randall, M.H.F. Wilkins, Proc. R. Soc. 366, 184 (1945)

  • [21] J.W. Stouwdam, F.C.J.M. van Veggel, NanoLett. 2, 733 (2002)

  • [22] N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, R. K. Vasta, S.D. Singh, J.Appl.Phys. 105, 064303 (2009)


Journal + Issues