Vectorial fractional integral inequalities with convexity

George Anastassiou 1
  • 1 Department of Mathematical Sciences, University of Memphis, Memphis, TN, 38152, USA

Abstract

Here we present vectorial general integral inequalities involving products of multivariate convex and increasing functions applied to vectors of functions. As specific applications we derive a wide range of vectorial fractional inequalities of Hardy type. These involve the left and right: Erdélyi-Kober fractional integrals, mixed Riemann-Liouville fractional multiple integrals. Next we produce multivariate Poincaré type vectorial fractional inequalities involving left fractional radial derivatives of Canavati type, Riemann-Liouville and Caputo types. The exposed inequalities are of L p type, p ≥ 1, and exponential type.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] G.A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph, (Springer, New York, 2009) http://dx.doi.org/10.1007/978-0-387-98128-4

  • [2] G.A. Anastassiou, Chaos, Soliton. Fract. 42, 365 (2009) http://dx.doi.org/10.1016/j.chaos.2008.12.013

  • [3] G.A. Anastassiou, Chaos, Soliton. Fract. 42, 1523 (2009) http://dx.doi.org/10.1016/j.chaos.2009.03.047

  • [4] G.A. Anastassiou, Chaos, Soliton. Fract. 42, 2080 (2009) http://dx.doi.org/10.1016/j.chaos.2009.03.183

  • [5] G.A. Anastassiou, Mathematical and Computer Modelling 54, 3098 (2011) http://dx.doi.org/10.1016/j.mcm.2011.07.040

  • [6] G.A. Anastassiou, Vectorial Hardy type fractional inequalities, submitted, (2012)

  • [7] D. Baleanu, O.G. Mustafa, R.P. Agarwal, Appl. Math. Lett. 23, 1129 (2010) http://dx.doi.org/10.1016/j.aml.2010.04.049

  • [8] D. Baleanu, O.G. Mustafa, R.P. Agarwal, J. Phys. A: Math. Theor. 43, 385209 (2010) http://dx.doi.org/10.1088/1751-8113/43/38/385209

  • [9] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, in: Series on Complexity, Nonlinearity and Chaos, (World Scientific, Singapore, 2012)

  • [10] J.A. Canavati, Nieuw Archief Voor Wiskunde 5, 53 (1987)

  • [11] Kai Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Vol 2004, 1st edition, (Springer, New York, Heidelberg, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2

  • [12] A.M.A. El-Sayed, M. Gaber, Electron. J. Theor. Phys. 3, 81 (2006)

  • [13] R. Gorenflo, F. Mainardi, Essentials of Fractional Calculus, 2000, Maphysto Center, http://www.maphysto.dk/oldpages/events/LevyCAC2000/MainardiNotes/fm2k0a.ps

  • [14] G.D. Handley, J.J. Koliha, J. Pecaric, Fract. Calc. Appl. Anal. 4, 37 (2001)

  • [15] H.G. Hardy, Messenger of Mathematics 47, 145 (1918)

  • [16] S. Iqbal, K. Krulic, J. Pecaric, J. Inequal. Appl. 264347 (2010)

  • [17] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, (Elsevier, New York, NY, USA, 2006)

  • [18] T. Mamatov, S. Samko, Fract. Calc. Appl. Anal. 13, 245 (2010)

  • [19] W. Rudin, Real and Complex Analysis, International Student Edition, (Mc Graw Hill, London, New York, 1970)

  • [20] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integral and Derivatives: Theory and Applications, (Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993)

  • [21] D. Stroock, A Concise Introduction to the Theory of Integration, Third Edition, (Birkhäuser, Boston, Basel, Berlin, 1999)

OPEN ACCESS

Journal + Issues

Search