On the origin of space

Richard Herrmann 1
  • 1 GigaHedron, Berliner Ring 80, D-63303, Dreieich, Germany

Abstract

Within the framework of fractional calculus with variable order the evolution of space in the adiabatic limit is investigated. Based on the Caputo definition of a fractional derivative using the fractional quantum harmonic oscillator a model is presented, which describes space generation as a dynamic process, where the dimension d of space evolves smoothly with time in the range 0 ≤ d(t) ≤ 3, where the lower and upper boundaries of dimension are derived from first principles. It is demonstrated, that a minimum threshold for the space dimension is necessary to establish an interaction with external probe particles. A possible application in cosmology is suggested.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] K. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, (Wiley, New York, 1993)

  • [2] S. G. Samko, B. Ross, Integr. Transf. Spec. F. 1, 277 (1993) http://dx.doi.org/10.1080/10652469308819027

  • [3] I. Podlubny, Fractional differential equations, (Academic Press, New York, 1999)

  • [4] R. Hilfer, Applications of fractional calculus in physics, (World Scientific Publ., Singapore, 2000) http://dx.doi.org/10.1142/9789812817747

  • [5] R. Herrmann, Fractional calculus — An introduction for physicists, (World Scientific Publ., Singapore, 2011) http://dx.doi.org/10.1142/8072

  • [6] G. F. Leibniz, Correspondence with l’Hospital manuscript (1695)

  • [7] C. Darwin, On the origin of species by means of natural selection, (John Murray, London, 1859)

  • [8] L. E. S. Ramirez, C. F. M. Coimbra, Int. J. Differential Equations 2010, 846107 (2010)

  • [9] T. Odzijewicz, A. B. Malinkowska, D. F. M. Torres, Operator Theory: Advances and Applications 229 291–301, (Birkhäuser Science, Springer, Berlin, Heidelberg, New York, 2013)

  • [10] T. Odzijewicz, A. B. Malinkowska, D. F. M. Torres, arXiv:1304.5282 [math.OC] (2013)

  • [11] O. von Guericke, Nova (ut vocantur) Magdeburgica de vacuo spatio, (J. Janssonius, Waesberge, Amsterdam, 1672)

  • [12] Th. Kaluza, Zum Unitätsproblem der Physik Sitzungsberichte der Preussischen Akademie der Wissenschaften Physikalisch-mathematischer Klasse (1921) 966

  • [13] O. Klein, Z. Phys. 37, 895 (1926) http://dx.doi.org/10.1007/BF01397481

  • [14] É. Cartan, Comptes Rendus Acad. Sci. 174, 593 (1922)

  • [15] T. W. B. Kibble, J. Math. Phys. 2, 212 (1961) http://dx.doi.org/10.1063/1.1703702

  • [16] A. Lasenby, C. Doran, S. Gull, Phil. Trans. R. Soc. Lond. A 356, 487 (1998) http://dx.doi.org/10.1098/rsta.1998.0178

  • [17] M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C D 72, 1959 (2012) http://dx.doi.org/10.1140/epjc/s10052-012-1959-4

  • [18] M. E. Rodriguez, M. J. S. Houndjo, D. Morneni, R. Myrzakulov, Int. J. Mod. Phys. D 22, 1350043 (2013) http://dx.doi.org/10.1142/S0218271813500430

  • [19] K. Karami, M. Jamil, S. Ghaffari, K. Fahimi, R. Myrzakulov, Can. J. Phys. 91, 770 (2013) http://dx.doi.org/10.1139/cjp-2013-0293

  • [20] F. R. Tangherlini, Nuovo Cimento 27, 636 (1963) http://dx.doi.org/10.1007/BF02784569

  • [21] X. F. He, Phys. Rev. B 42 11751 (1990) http://dx.doi.org/10.1103/PhysRevB.42.11751

  • [22] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, Phys. Lett. B 288, 23 (1992) http://dx.doi.org/10.1016/0370-2693(92)91949-A

  • [23] G. Calcagni, J. High Energy Phys. 2012, 65 (2012) http://dx.doi.org/10.1007/JHEP01(2012)065

  • [24] Z. Merali, Nature 500, 516 (2013) http://dx.doi.org/10.1038/500516a

  • [25] P. Ehrenfest, Proc. Amsterdam Acad. 20 I, 200 (1917) reprinted in M. J. Klein (Ed.), (North Holland Publ. Co., Amsterdam, 1959)

  • [26] M. D. Roberts, arXiv:0909.1171 (2009)

  • [27] R. A. El-Nabulsi, Fizika B 19, 103 (2010)

  • [28] U. Debnath, M. Jamil, S. Chattopadhya, Int. J. Theor. Phys. 51, 812 (2012) http://dx.doi.org/10.1007/s10773-011-0961-1

  • [29] S. Chakraborty, U. Debnath, M. Jamil, Can. J. Phys. 90, 365 (2012) http://dx.doi.org/10.1139/p2012-027

  • [30] R. A. El-Nabulsi, Indian J. Phys. 87(2), 195 (2013) http://dx.doi.org/10.1007/s12648-012-0201-4

  • [31] U. Debnath, S. Chattopadhya, M. Jamil, Journal of Theoretical and Applied Physics 7, 25 (2013) http://dx.doi.org/10.1186/2251-7235-7-25

  • [32] R. Herrmann, Int. J. Mod. Phys. B 27, 1350019 (2013) http://dx.doi.org/10.1142/S0217979213500197

  • [33] M. Caputo, Geophys. J. R. Astr. Soc. 13, 529 (1967) http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x

  • [34] V. E. Tarasov, Int. J. Math. 18, 281 (2007) http://dx.doi.org/10.1142/S0129167X07004102

  • [35] R. Herrmann, Physica A 389, 4613 (2010) http://dx.doi.org/10.1016/j.physa.2010.07.004

  • [36] R. Herrmann, Gam. Ori. Chron. Phys. 1, 13 (2013)

  • [37] N. Laskin, Phys. Rev. E 66, 056108 (2002) http://dx.doi.org/10.1103/PhysRevE.66.056108

  • [38] P. A. M. Dirac, Scientific American 208, 47 (1963) http://dx.doi.org/10.1038/scientificamerican0563-45

  • [39] A. G. Riess et al., Astron. J. 116, 1009 (1998) http://dx.doi.org/10.1086/300499

  • [40] F. Zwicky, Helv. Phys. Acta 6, 110 (1933), republication: Gen. Relat. Grav. 41, 207 (2009)

  • [41] V. C. Rubin, W. K. Jr. Ford, N. Thonnard, M. S. Roberts, J. A. Graham, Astron. J. 81, 687 (1976) http://dx.doi.org/10.1086/111942

  • [42] V. C. Rubin, N. Thonnard, W. K. Ford, M. S. Roberts, Astron. J. 81, 718 (1976)

  • [43] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, (Dover Publications, New York, 1965)

  • [44] M. M. Colless et al., (the 2dFGRS team), Mon. Not. R. Astron. Soc. 328, 1039 (2001) http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x

  • [45] M. Jamil, A. R. Muneer, D. Momeni, O. Razina, K. Esmakhanova, J. Phys.: Conf. Ser. 354, 012008 (2012)

  • [46] B. Riemann, (1847) Versuch einer allgemeinen Auffassung der Integration und Differentiation in: H. Weber, R. Dedekind (Eds.) (1892) Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlass, Teubner, Leipzig, reprinted in Collected works of Bernhard Riemann, Dover Publications, 353 (1953)

OPEN ACCESS

Journal + Issues

Open Physics (former Central European Journal of Physics) is a peer-reviewed Open Access journal, devoted to the publication of fundamental research results in all fields of physics.

Search