Finite size effects in epidemic spreading: the problem of overpopulated systems

Wojciech Ganczarek
  • 1 Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059, Kraków, Poland
  • 2 Institute of Mathematics, Jagiellonian University, ul. Łojasiewicza 6, 30-346, Kraków, Poland

Abstract

In this paper we analyze the impact of network size on the dynamics of epidemic spreading. In particular, we investigate the pace of infection in overpopulated systems. In order to do that, we design a model for epidemic spreading on a finite complex network with a restriction to at most one contamination per time step, which can serve as a model for sexually transmitted diseases spreading in some student communes. Because of the highly discrete character of the process, the analysis cannot use the continuous approximation widely exploited for most models. Using a discrete approach, we investigate the epidemic threshold and the quasi-stationary distribution. The main results are two theorems about the mixing time for the process: it scales like the logarithm of the network size and it is proportional to the inverse of the distance from the epidemic threshold.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. M. Anderson, R. M. May, Infectious Diseases of Humans, Dynamics and Control (Oxford University Press, Oxford, 1992)

  • [2] M. E. J. Newman, SIAM Rev. 45, 167 (2003) http://dx.doi.org/10.1137/S003614450342480

  • [3] M. Boguñá, C. Castellano, R. Pastor-Satorras, Phys. Rev. Lett. 111, 068701 (2013) http://dx.doi.org/10.1103/PhysRevLett.111.068701

  • [4] C. Buono, F. Vazquez, P. A. Macri, L. A. Braunstein, Phys. Rev. E 88, 022813 (2013) http://dx.doi.org/10.1103/PhysRevE.88.022813

  • [5] A. S. Mata, S. C. Ferreira, Europhys. Lett. 103, 48003 (2013) http://dx.doi.org/10.1209/0295-5075/103/48003

  • [6] X.-L. Peng, X.-J. Xu, X. Fu, T. Zhou, Phys. Rev. E 87, 022813 (2013) http://dx.doi.org/10.1103/PhysRevE.87.022813

  • [7] A. S. Saumell-Mendiola, M. Ángeles Serrano, M. Boguñá, Phys. Rev. E 86, 026106 (2012) http://dx.doi.org/10.1103/PhysRevE.86.026106

  • [8] A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008) http://dx.doi.org/10.1017/CBO9780511791383

  • [9] W. Ganczarek, arXiv:1307.5503 [physics.soc-ph]

  • [10] R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001) http://dx.doi.org/10.1103/PhysRevLett.86.3200

  • [11] R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, Cambridge, 2004) http://dx.doi.org/10.1017/CBO9780511610905

  • [12] M. Boguñá, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 90, 028701 (2003) http://dx.doi.org/10.1103/PhysRevLett.90.028701

  • [13] S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, Y. Moreno, Europhys. Lett. 89, 38009 (2010) http://dx.doi.org/10.1209/0295-5075/89/38009

  • [14] M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 68, 036112 (2003) http://dx.doi.org/10.1103/PhysRevE.68.036112

  • [15] Y. Moreno, J. B. Gómez, A. F. Pacheco, Phys. Rev. E 68, 035103 (2003) http://dx.doi.org/10.1103/PhysRevE.68.035103

  • [16] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira, J. F. F. Mendes, Phys. Rev. Lett. 109, 128702 (2012) http://dx.doi.org/10.1103/PhysRevLett.109.128702

  • [17] H. K. Lee, P.-S. Shim, J. D. Noh, Phys. Rev. E 87, 062812 (2013) http://dx.doi.org/10.1103/PhysRevE.87.062812

  • [18] T. Petermann, P. De Los Rios, J. Theor. Biol. 229, 1 (2004) http://dx.doi.org/10.1016/j.jtbi.2004.02.017

  • [19] R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 035108(R) (2002) http://dx.doi.org/10.1103/PhysRevE.65.035108

  • [20] T. E. Harris, Ann. Probab. 2, 969 (1974) http://dx.doi.org/10.1214/aop/1176996493

  • [21] M. Boguñá, C. Castellano, R. Pastor-Satorras, Phys. Rev. E 79, 036110 (2009) http://dx.doi.org/10.1103/PhysRevE.79.036110

  • [22] Y. Li, D. Han, J. Stat. Phys. 153, 312 (2013) http://dx.doi.org/10.1007/s10955-013-0832-7

  • [23] G. Odor, EPJ Web of Conferences 44, 04005 (2013) http://dx.doi.org/10.1051/epjconf/20134404005

  • [24] A. Sinclair, Algorithms for random generation and counting: a Markov chain approach (Birkhauser Verlag, Boston-Basel-Berlin, 1993) http://dx.doi.org/10.1007/978-1-4612-0323-0

  • [25] E. N. Gilbert, Ann. Math. Stat. 30, 1141 (1959) http://dx.doi.org/10.1214/aoms/1177706098

  • [26] M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002) http://dx.doi.org/10.1103/PhysRevLett.89.208701

  • [27] D. Shah, Found. Trends Net. 3, 1 (2009) http://dx.doi.org/10.1561/1300000014

  • [28] D. J. Watts, S. H. Strogatz, Nature 393, 440 (1998) http://dx.doi.org/10.1038/30918

  • [29] M. E. J. Newman, Networks: An introduction (Oxford University Press, Oxford, 2011)

  • [30] A. M. Yaglom, Dokl. Acad. Nauk SSSR 56, 795 (1947) (in Russian)

  • [31] J. N. Darroch, E. Seneta, J. Appl. Prob. 2, 88 (1965) http://dx.doi.org/10.2307/3211876

  • [32] E. Seneta, D. Vere-Jones, J. Appl. Prob. 3, 403 (1966) http://dx.doi.org/10.2307/3212128

  • [33] J. N. Darroch, E. Seneta, J. Appl. Prob. 4, 192 (1967) http://dx.doi.org/10.2307/3212311

  • [34] R. L. Tweedie, J. Appl. Probab. 35, 517 (1998) http://dx.doi.org/10.1239/jap/1032265201

  • [35] D. J. Daley, Ann. Math. Statist. 40, 532 (1969) http://dx.doi.org/10.1214/aoms/1177697721

  • [36] M. Buiculescu, J. Appl. Probab. 12, 60 (1975) http://dx.doi.org/10.2307/3212407

  • [37] E. A. van Doorn, P. K. Pollett, Eur. J. Oper. Res. 230, 1 (2013) http://dx.doi.org/10.1016/j.ejor.2013.01.032

  • [38] R. S. Sander, S. C. Ferreira, R. Pastor-Satorras, Phys. Rev. E 87, 022820 (2013) http://dx.doi.org/10.1103/PhysRevE.87.022820

  • [39] P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulations and Queues (Springer-Verlag, New York, 1999)

  • [40] E. Seneta, Non-negative Matrices and Markov Chains (Springer Science+Business Media, New York, 2006)

  • [41] F. R. Gantmacher, Applications of the Theory of Matrices (Interscience Publishers, New York, 1959)

  • [42] L. B. Koralov, Y. G. Sinai, Theory of Probability and Random Processes (Springer-Verlag, Berlin, 2007) http://dx.doi.org/10.1007/978-3-540-68829-7

  • [43] L. A. Breyer, R. O. Roberts, Stoc. Proc. Appl. 84, 177 (1999) http://dx.doi.org/10.1016/S0304-4149(99)00018-6

OPEN ACCESS

Journal + Issues

Search