An approximation to the cross sections of Z l boson production at CLIC by using neural networks

Serkan Akkoyun 1  and Seyit Kara
  • 1 Faculty of Sciences, Department of Physics, Cumhuriyet University, 58140, Sivas, Turkey
  • 2 Faculty of Art and Sciences, Department of Physics, Nigde University, 51240, Nigde, Turkey
  • 3 Faculty of Sciences, Department of Physics, Ankara University, 06100, Tandogan, Ankara, Turkey

Abstract

In this work, the possible dynamics associated with leptophilic Z l boson at CLIC (Compact Linear Collider) have been investigated by using artificial neural networks (ANNs). These hypotetic massive boson Z l have been shown through the process e + e −→µ+µ−. Furthermore, the invariant mass distributions for final muons have been consistently predicted by using ANN. For these highly non-linear data, we have constructed consistent empirical physical formulas (EPFs) by appropriate feed-forward ANN. These ANNEPFs can be used to derive further physical functions which could be relevant to studying Z l.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] T. D. Lee, C. N. Yang, Phys. Rev. 98, 1501 (1955) http://dx.doi.org/10.1103/PhysRev.98.1501

  • [2] L. B. Okun, Yad. Fiz. 10, 358 (1969) (in Russian); Sov. J. Nucl. Phys. 10, 206 (1969) (in English)

  • [3] W. Buchmuller, C. Greub, P. Minkowski, Phys. Lett. B 267, 395 (1991) http://dx.doi.org/10.1016/0370-2693(91)90952-M

  • [4] S. Khalil, Phys. Rev. D 82, 077702 (2010) http://dx.doi.org/10.1103/PhysRevD.82.077702

  • [5] L. Basso, A. Belyaev, S. Moretti, G. M. Pruna, High Energy Phys. 10, 006 (2009) http://dx.doi.org/10.1088/1126-6708/2009/10/006

  • [6] S. O. Kara, M. Sahin, S. Sultansoy, S. Turkoz, High Energy Phys. 08, 072 (2011) http://dx.doi.org/10.1007/JHEP08(2011)072

  • [7] N. Yildiz, Phys. Lett. A 345, 69 (2005) http://dx.doi.org/10.1016/j.physleta.2005.06.116

  • [8] K. Hornik, M. Stinchcombe, H. White, Neural Networks 2, 359 (1989) http://dx.doi.org/10.1016/0893-6080(89)90020-8

  • [9] M. Acciarri, Phys. Lett. B 461, 376 (1999) http://dx.doi.org/10.1016/S0370-2693(99)00853-9

  • [10] E. Boos, L. Dudko, D. Smirnov, Nucl. Instrum. Meth. A 502, 486 (2003) http://dx.doi.org/10.1016/S0168-9002(03)00477-7

  • [11] F. Hakl, M. Hlavek, R. Kalous, Nucl. Instrum. Meth. A 502, 489 (2003) http://dx.doi.org/10.1016/S0168-9002(03)00478-9

  • [12] B. Mellado, W. Quayle, S. L. Wu, Phys. Lett. B 611, 60 (2005) http://dx.doi.org/10.1016/j.physletb.2005.02.021

  • [13] M. Mjahed, Nucl. Phys. B-Proc. Sup. 140, 799 (2005) http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.263

  • [14] The NNPDF Collaboration et al., J. High Energy Phys. 03, 039 (2007) http://dx.doi.org/10.1088/1126-6708/2007/03/039

  • [15] L. Linssen, A. Miyamoto, M. Stanitzki, H. Weerts, arXiv:1202.5940 [physics.ins-det]

  • [16] A. Pukhov et al., arXiv:9908288 [hep-ph]

  • [17] S. Haykin, Neural networks: a comprehensive foundation, 2nd edition (Prentice-Hall, New Jersey, 1999)

  • [18] K. Levenberg, Q. Appl. Math. 2, 164 (1944)

  • [19] D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963) http://dx.doi.org/10.1137/0111030

OPEN ACCESS

Journal + Issues

Search