Laser scribing on HOPG for graphene stamp printing on silicon wafer

Jelena Butikova 1 , Boris Polyakov 1 , Lauris Dimitrocenko 1 , Edgars Butanovs 1 , and Ivars Tale 1
  • 1 Institute of Solid State Physics, 8 Kengaraga St., LV-1063, Riga, Latvia

Abstract

Highly oriented pyrolytic graphite (HOPG) was scribed by pulsed laser beam to produce square patterns. Patterning of HOPG surface facilitates the detachment of graphene layers during contact printing. Direct HOPG-to-substrate and glue-assisted stamp printing of a few-layers graphene was compared. Printed graphene sheets were visualized by optical and scanning electron microscopy. The number of graphene layers was measured by atomic force microscopy. Glue-assisted stamp printing allows printing relatively large graphene sheets (40×40 μm) onto a silicon wafer. The presented method is easier to implement and is more flexible than the majority of existing ways of placing graphene sheets onto a substrate.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. K. Geim, K. S. Novoselov, Nature Mater. 6, 183 (2007) http://dx.doi.org/10.1038/nmat1849

  • [2] A. K. Geim, Science 324, 1530 (2009) http://dx.doi.org/10.1126/science.1158877

  • [3] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 915 (2006) http://dx.doi.org/10.1126/science.1130681

  • [4] Y. Zhou, Q. L. Bao, L. Tang, Y. Zhong, K. P. Loh, Chem. Mater. 21, 2950 (2009) http://dx.doi.org/10.1021/cm9006603

  • [5] S. Park, R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009) http://dx.doi.org/10.1038/nnano.2009.58

  • [6] Y. Zhou, K. P. Loh, Adv. Mater. 22, 3615 (2010) http://dx.doi.org/10.1002/adma.201000436

  • [7] X. Liang, Z. Fu, S. Y. Chou, Nano Lett. 7, 3840 (2007) http://dx.doi.org/10.1021/nl072566s

  • [8] Y. Zhou et al., Adv. Mater. 22, 67 (2010) http://dx.doi.org/10.1002/adma.200901942

  • [9] G. Kalita, L. Qi, Y. Namba, K. Wakita, M. Umeno, Mater. Lett. 65, 1569 (2011) http://dx.doi.org/10.1016/j.matlet.2011.02.057

  • [10] N. Kurra, A. A. Sagade, G. U. Kulkarni, Adv. Funct. Mater. 21, 3836 (2011) http://dx.doi.org/10.1002/adfm.201100832

  • [11] G. H. Han et al, ACS Nano, 5–1, 263 (2011) http://dx.doi.org/10.1021/nn1026438

  • [12] L. Lancellotti et al, Thin Solid Films, 522, 390 (2012) http://dx.doi.org/10.1016/j.tsf.2012.09.040

  • [13] J. K. Wassei, R. B. Kaner, Mater. Today, 13-3, 52 (2010) http://dx.doi.org/10.1016/S1369-7021(10)70034-1

  • [14] P. Blake et al, Appl. Phys. Lett. 91, 063124 (2007) http://dx.doi.org/10.1063/1.2768624

  • [15] D. Teweldebrhan, A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009) http://dx.doi.org/10.1063/1.3062851

  • [16] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, E. D. Williams, Nano Lett. 7–6, 1643 (2007) http://dx.doi.org/10.1021/nl070613a

  • [17] J.-J. Yu, Sh. Wu, Agilent Technologies, Application Note (2012)

OPEN ACCESS

Journal + Issues

Search